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Abstract

This paper considers a nonparametric panel data model with nonadditive unobserved

heterogeneity. As in the standard linear panel data model, two types of unobservables

are present in the model: individual-specific effects and idiosyncratic disturbances. The

individual-specific effects enter the structural function nonseparably and are allowed to

be correlated with the covariates in an arbitrary manner. The idiosyncratic disturbance

term is additively separable from the structural function. Nonparametric identification

of all the structural elements of the model is established. No parametric distributional

or functional form assumptions are needed for identification. The identification result is

constructive and only requires panel data with two time periods. Thus, the model permits

nonparametric distributional and counterfactual analysis of heterogeneous marginal effects

using short panels. The paper also develops a nonparametric estimation procedure and

derives its rate of convergence. As a by-product the rates of convergence for the problem

of conditional deconvolution are obtained. The proposed estimator is easy to compute and

does not require numeric optimization. A Monte-Carlo study indicates that the estimator

performs very well in finite samples.
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1 Introduction

The importance of unobserved heterogeneity in modeling economic behavior is widely recog-

nized. Panel data offer useful opportunities for taking latent characteristics of individuals

into account. This paper considers a nonparametric panel data framework that allows for

heterogeneous marginal effects. As will be demonstrated, the model permits nonparametric

identification and estimation of all the structural elements using short panels.

Consider the following panel data model:

Yit = m (Xit, αi) + Uit, i = 1, . . . , n, t = 1, . . . , T ; (1)

where Xit is a vector of explanatory variables, Yit is a scalar outcome variable, scalar αi repre-

sents persistent heterogeneity (possibly correlated with Xit), and Uit is a scalar idiosyncratic

disturbance term.1 ,2 This paper assumes that the number of time periods T is small (T = 2 is

suffi cient for identification), while the number of cross-section units n is large, which is typical

for microeconometric data.

This paper explains how to nonparametrically identify and estimate the structural func-

tion m (x, α) unknown to the econometrician. The paper also identifies and estimates the

conditional distribution of αi, given Xit, which is needed for policy analysis. The analysis

does not impose any parametric assumptions on the function m (x, α) or on the distributions

of αi and Uit.

The structural function depends nonlinearly on α, which allows the derivative ∂m (x, α) /∂x

to vary across units with the same observed x. That is, observationally identical individuals

can have different responses to changes in x. This is known to be an important feature of mi-

croeconometric data.3 This paper shows, among other things, how to estimate the distribution

of heterogeneous marginal effects fully nonparametrically.

As an example of application of the above model, consider the effect of union membership

on wages. Let Yit denote the (logarithm of) individual’s wage and Xit be a dummy coding

whether the i-th individual wage in t-th period was negotiated as a part of union agreement.

Heterogeneity αi is the unobserved individual skill level, while the idiosyncratic disturbances

Uit denote luck and measurement error. The effect of union membership for an individual with

1As usual, capital letters denote random variables, while lower case letters refer to the values of random
variables. The only exception from this rule is αi, which is a random variable, while α stands for its value.
This notation should not cause any confusion because αi is an unobservable .

2 It is assumed that Uit is independent of αi, conditional on Xit. The disturbance Uit does not have to be
independent of Xit; only the standard orthogonality restriction E [Uit|Xit] = 0 is imposed. In addition, the
distribution of Uit does not have to be the same across time periods.

3A partial list of related studies includes Heckman, Smith, and Clements (1997), Heckman and Vytlacil
(1998), Abadie, Angrist, and Imbens (2002), Matzkin (2003), Chesher (2003), Chernozhukov and Hansen
(2005), Imbens and Newey (In press), Bitler, Gelbach, and Hoynes (2006), Djebbari and Smith (2008), and the
references therein.
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skill αi is then m (1, αi) −m (0, αi). Nonseparability of the structural function in α permits

the union membership effect to be different across individuals with different unobserved skill

levels. This is exactly what the empirical literature suggests.4 On the contrary, a model

with additively separable αi (e.g., linear model m (Xit, αi) = X ′itβ + αi) fails to capture the

heterogeneity of the union effect because αi cancels out.

Similar to the above example, the model can be applied to the estimation of treatment

effects when panel data are available. Assumptions imposed in this model are strong, but

allow nonparametric identification and estimation of heterogeneous treatment effects for both

treated and untreated individuals. Thus, the model can be used to study the effect of a

policy on the whole population. For instance, one can identify and estimate the percentage

of individuals who are better/worse off as a result of the program.

Another example is the life-cycle model of consumption and labor supply of Heckman

and MaCurdy (1980) and MaCurdy (1981).5 These papers obtain individual consumption

behavior of the form6

Cit = C (Wit, λi)︸ ︷︷ ︸
unknown function

+ Uit︸︷︷︸
measurement error

(2)

where Cit is the (logarithm of) consumption, Wit is the hourly wage, Uit is the measurement

error, and λi is the scalar unobserved heterogeneity that summarizes all the information

about individual’s initial wealth, expected future earnings, and the form of utility function.

The consumption function C(w, λ) can be shown to be increasing in both arguments, but is

unknown to the researcher since it depends on the utility function of the individual. In the

existing literature, it is common to assume very specific parametric forms of utility functions

for estimation. The goal of these parametric assumptions is to make the (logarithm of)

consumption function additively separable in the unobserved λi. Needless to say, this may

lead to model misspecification. In contrast, the method of this paper can be used to estimate

model (2) without imposing any parametric assumptions.7

The nonparametric identification result of this paper is constructive and only requires two

periods of data (T = 2). The identification strategy consists of the following three steps.

First, the conditional (on covariates Xit) distribution of the idiosyncratic disturbances Uit is

identified using the information on the subset of individuals whose covariates do not change

across time periods. Next, conditional on covariates, one can deconvolve Uit from Yit to

obtain the conditional distribution of m (Xit, αi) that is the key to identifying the structural

function. The third step identifies the structural function under two different scenarios. One

scenario assumes random effects, that is, the unobserved heterogeneity is independent of the

4See, for example, Card (1996), Lemieux (1998), and Card, Lemieux, and Riddell (2004).
5 I thank James Heckman for suggesting the example.
6 I have imposed an extra assumption that the rate of intertemporal substitution equals the interest rate.
7Similarly, restrictive parametric forms of utility functions are imposed in studies of family risk-sharing and

altruism, see for example Hayashi, Altonji, and Kotlikoff (1996) and the references therein.
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covariates. The other scenario considers fixed effects, so that the unobserved heterogeneity

and the covariates could be dependent.8 The latter case is handled without imposing any

parametric assumptions on the form of the dependence. Similar to linear panel data models,

in the random effects case between-variation identifies the unknown structural function. In

the fixed effects case one has to rely on within-variation for identification of the model. The

details of the identification strategy are given in Section 2.

The paper proposes an estimation procedure that is easy to implement. No numerical

optimization is necessary. Estimation of the model boils down to estimation of conditional

cumulative distribution and quantile functions. Conditional cumulative distribution func-

tions (conditional CDFs) are estimated by conditional deconvolution and quantile functions

are estimated by inverting the corresponding conditional CDFs. Although deconvolution has

been widely studied in the statistical and econometric literature, this paper appears to be the

first to consider conditional deconvolution. The paper provides the necessary estimators of

conditional CDFs and derives their rates of convergence. The estimators, assumptions, and

theoretical results are presented in Section 3. The rates of convergence of the conditional de-

convolution estimators of conditional CDFs are shown to be natural combinations of the rates

of convergence of the unconditional deconvolution estimator (Fan, 1991) and the conditional

density estimator (Stone, 1982).9 Finite sample properties of the estimators are investigated

by a Monte-Carlo study in Section 4. The estimators appear to perform very well in practice.

The literature on parametric and semiparametric panel data modelling is vast. Traditional

linear panel models with heterogeneous intercepts are reviewed, for example, in Hsiao (2003)

and Wooldridge (2002). Hsiao (2003) and Hsiao and Pesaran (2004) review linear panel

models with random individual slope coeffi cients. Several recent papers consider fixed effect

estimation of nonlinear (semi-)parametrically specified panel models. The estimators for

the parameters are biased, but large T asymptotic approximations are used to reduce the

order of bias; see for example Arellano and Hahn (2006) or Hahn and Newey (2004). As an

alternative, Honoré and Tamer (2006) and Chernozhukov, Fernandez-Val, Hahn, and Newey

(2008) consider set identification of the parameters and marginal effects.

A line of literature initiated by Porter (1996) studies panel models, where the effect of

covariates is not restricted by a parametric model. However, heterogeneity is still modeled

as an additively separable intercept, i.e. Yit = g (Xit) + αi + Uit. See, for example, Hen-

derson, Carroll, and Li (2008) for a list of references and discussion. Since g (·) is estimated
nonparametrically, these models are sometimes called nonparametric panel data models. The

analysis of this paper is "more" nonparametric since it models the effect of heterogeneity αi
fully nonparametrically.

8See Graham and Powell (2008) for the discussion of the "fixed effects" terminology.
9The conditional deconvolution estimators and the statistical results of Section 3 may also be used in other

applications such as measurement error or auction models.
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Conceptually, this paper is related to the work of Kitamura (2004), who considers non-

parametric identification and estimation of a finite mixture of regression functions using cross-

section data. Model (1) can be seen as an infinite mixture model. The assumption of finiteness

of the number of mixture components is crucial for the analysis of Kitamura (2004), and his

assumptions, as well as his identification and estimation strategies are different from those

used here. The method of this paper is also related to the work of Horowitz and Markatou

(1996). They study the standard linear random effect panel, but do not impose parametric

assumptions on the distribution of either the heterogeneous intercept or idiosyncratic errors.

For fully nonseparable panel models, Altonji and Matzkin (2005) and Bester and Hansen

(2007) present conditions for identification and estimation of the local average derivative.

Their results do not identify the structural function, policy effects or weighted average deriv-

ative in model (1). Altonji and Matzkin (2005) and Athey and Imbens (2006) nonparamet-

rically identify distributional effects in panel data and repeated cross-section models with

scalar endogenous unobservables. In contrast, model (1) clearly separates the role of unob-

served heterogeneity and idiosyncratic disturbances.

Chamberlain (1992) considers a linear panel data model with random coeffi cients, indepen-

dent of the covariates. Lemieux (1998) considers the estimation of a linear panel model where

fixed effects can be interacted with a binary covariate (union membership). His assumption

and model permit variance decompositions that are used to study the effect of union member-

ship on wage inequality. Note that model of this paper does not impose linearity and allows

for complete distributional analysis. In particular, the model can be applied to study how

the individual’s unobserved characteristics affect his or her likelihood of becoming a union

member; a result that cannot be obtained from a variance decomposition.

Recently, Arellano and Bonhomme (2008) and Graham and Powell (2008) consider the

analysis of linear panel models where the coeffi cients are random and can be arbitrarily

correlated with the covariates. The first paper identifies the joint distribution of the co-

effi cients, while the second paper obtains average partial effect under weaker assumptions.

While developed independently of the current paper, Arellano and Bonhomme (2008) also

use deconvolution arguments for identification. At the same time, there are at least two im-

portant differences between the approach of the present paper and the models of Arellano and

Bonhomme (2008) and Graham and Powell (2008). The linearity assumption is vital for the

analysis of both papers. In addition, the identifying rank restriction imposed in these papers

does not allow identification of some important counterfactuals such as the treatment effect

for the untreated or for the whole population. The present paper does not rely on linearity

for identification and does provide identification results for the above-mentioned counterfac-

tuals. Finally, the very recent papers by Chernozhukov, Fernandez-Val, and Newey (2009),

Graham, Hahn, and Powell (2009), and Hoderlein and White (2009) are also related to the

present paper, but have a different focus.
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2 Identification

This section presents the identification results for model (1). The identification results are

presented for the case T = 2; generalization for the case T > 2 is immediate. Consider the

following assumption:

Assumption ID. Suppose that:

(i) T = 2 and {Xi, Ui, αi}ni=1 is a random sample, where Xi ≡ (Xi1, Xi2) and Ui ≡ (Ui1, Ui2);

(ii) fUit|Xit,αi,Xi(−t),Ui(−t)
(
ut|x, α, x(−t), u(−t)

)
= fUit|Xit (ut|x) for all

(
ut, x, α, x(−t), u(−t)

)
∈

R×X×R×X×R and t ∈ {1, 2};10

(iii) E [Uit|Xit = x] = 0, for all x ∈ X and t ∈ {1, 2};11

(iv) the (conditional) characteristic function φUit (s|Xit = x) of Uit, given Xit = x, does not

vanish for all s ∈ R, x ∈ X , and t ∈ {1, 2};12

(v) E [|m (xt, αi)| |Xi = (x1, x2)] and E [ |Uit||Xit = xt] are uniformly bounded for all t and

(x1, x2) ∈ X × X ;

(vi) the joint density of (Xi1, Xi2) satisfies fXi1,Xi2 (x, x) > 0 for all x ∈ X , where for discrete
components of Xit the density is taken with respect to the counting measure;

(vii) m (x, α) is weakly increasing in α for all x ∈ X ;

(viii) αi is continuously distributed, conditional on Xi = (x1, x2), for all (x1, x2) ∈ X × X

(ix) functions m (x, α), fUit|Xit (u|x), fαi|Xit (α|x), fαi|Xi1,Xi2 (α|x1, x2) are everywhere con-
tinuous in the continuously distributed components of x, x1, x2 for all α ∈ R and

u ∈ R.13

Conditional independence Assumption ID(ii) is strong; however, independence assump-

tions are usually necessary to identify nonlinear nonparametric models. For example, this

assumption is satisfied if Uit = σt (Xit) ξit, where σt (x) are positive bounded functions and

ξit are i.i.d. (0, 1) and are independent of (αi, Xi). Assumptions ID(ii) rules out lagged de-

pendent variables as explanatory variables, as well as serially correlated disturbances. On the

other hand, this assumption permits conditional heteroskedasticity, since Uit does not need

10 Index (−t) stands for "other than t" time periods, which in the case T = 2 is the (3− t)-th period.
11 It is possible to replace Assumption ID(iii) with the conditional quantile restriction QUit|Xit

(q|x) = 0 for
some q ∈ (0, 1) for all x ∈ X .
12The conditional characteristic function φA (s|X = x) of A, given X = x, is defined as φA (s|X = x) =

E [exp (isA) |X = x], where i=
√
−1.

13 It is straightforward to allow the functions to be almost everywhere continuous. In this case the function
m (x, α) is identified at all points of continuity.
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to be independent of Xit. Moreover, the conditional and unconditional distributions of Uit
can differ across time periods. Assumption ID(ii) imposes conditional independence between

αi and Uit, which is crucial for identification. The assumption of conditional independence

between Uit and Ui(−t) can be relaxed; Remark 7 below and Section 6.2 in the Appendix

explain how to identify the model with serially correlated disturbances Uit. Assumption

ID(iii) is standard. Assumption ID(iv) is technical and very mild. Characteristic functions of

most standard distributions do not vanish on the real line. For instance, Assumption ID(iv)

is satisfied when, conditional on Xit, Uit has normal, log-normal, Cauchy, Laplace, χ2, or

Student-t distribution. Assumption ID(v) is mild and guarantees the existence of conditional

characteristic functions of m (x, αi) and Uit. Assumption ID(vi) is restrictive, but is a key

to identification. Inclusion of explanatory variables that violate this assumption (such as

time-period dummies) into the model is discussed below in Remark 5. Assumption ID(vii)

is standard. Note that Assumption ID(vii) is suffi cient to identify the random effects model,

but needs to be strengthened to identify the structural function when the effects αi can be

correlated with the covariates Xit. Assumption ID(viii) is not restrictive since function the

m (x, α) can be a step function in α. Assumption ID(ix) is only needed when the covariates

Xit contain continuously distributed components and is used to handle conditioning on certain

probability zero events below. Finally, if the conditions of Assumption ID hold only for some,

but not all, points of support of Xit let X be the set of such points; then the identification

results hold for all x ∈ X .
For the clarity of exposition, identification of the random effects model is considered

first. Subsequently, the result for the fixed effects is presented. Note that the random effect

specification of model (1) can be interpreted as quantile regression with measurement error

(Uit).14

The following assumption is standard in nonlinear random effect models:

Assumption RE. (i) αi and Xi are independent; (ii) αi has a uniform distribution on [0, 1].

Assumption RE(i) defines the random effect model, while Assumption RE(ii) is a standard

normalization, which is necessary since the function m (x, α) is modelled nonparametrically.

Theorem 1. Suppose Assumptions ID and RE are satisfied. Then, model (1) is identified,

i.e. functions m (x, α) and fUit|Xit (u|x) are identified for all x ∈ X , α ∈ (0, 1), u ∈ R, and
t ∈ {1, 2}.

The proof of Theorem 1 uses the following extension of a result due to Kotlarski (1967) .

Lemma 1. Suppose (Y1, Y2) = (A+ U1, A+ U2), where the scalar random variables A, U1,

and U2, (i) are mutually independent, (ii) have at least one absolute moment, (iii) E [U1] = 0,
14 I thank Victor Chernozhukov for suggesting this interpretation.
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(iv) φUt (s) 6= 0 for all s and t ∈ {1, 2}. Then, the distributions of A, U1, and U2 are identified
from the joint distribution of (Y1, Y2).

The proof of the lemma is given in the Appendix. See also Remark 9 below for the

discussion.

Proof of Theorem 1. 1. Observe that m (Xi1, αi) = m (Xi2, αi) when Xi1 = Xi2 = x. For

any x ∈ X , (
Yi1

Yi2

)∣∣∣∣∣ {Xi1 = Xi2 = x} =

(
m (x, αi) + Ui1

m (x, αi) + Ui2

)∣∣∣∣∣ {Xi1 = Xi2 = x} . (3)

Assumptions ID(i)-(v) ensure that Lemma 1 applies to (3), conditional on the event Xi1 =

Xi2 = x, and identifies the conditional distributions of m (x, αi), Ui1, and Ui2, given Xi1 =

Xi2 = x, for all x ∈ X . The conditional independence Assumption ID(ii) gives

fUit|Xi1,Xi2 (u|x, x) = fUit|Xit (u|x) for t ∈ {1, 2}. That is, the conditional density fUit|Xit (u|x)

is identified for all x ∈ X , u ∈ R, and t ∈ {1, 2}.
2. Note that, conditional on Xit = x (as opposed to Xi1 = Xi2 = x), the distribution

of Yit is a convolution of distributions of m (x, αi) and Uit.15 Therefore, the conditional

characteristic function of Yit can be written as

φYit (s|Xit = x) = φm(x,αi) (s|Xit = x)φUit (s|Xit = x) .

In this equation φYit (s|Xit = x) = E [exp (isYit) |Xit = x] can be identified directly from data,

while φUit (s|Xit = x) was identified in the previous step. Thus, the conditional characteristic

function of m (x, αi) is identified by

φm(x,αi) (s|Xit = x) =
φYit (s|Xit = x)

φUit (s|Xit = x)
,

where φUit (s|Xit = x) 6= 0 for all s ∈ R, x ∈ X , and t ∈ {1, 2} due to Assumption ID(vi).
3. The identification of the characteristic function φm(x,αi) (s|Xit = x) is well known to be

equivalent to the identification of the corresponding conditional distribution of m (x, αi) given

Xit = x; see, for example, Billingsley (1986, p. 355). For instance, the conditional cumulative

distribution function Fm(x,αi)|Xit (w|x) can be obtained using the result of Gil-Pelaez (1951):

Fm(x,αi)|Xit (w|x) =
1

2
− lim
χ→∞

∫ χ

−χ

e−isw

2πis
φm(x,αi) (s|Xit = x) ds, (4)

for any point (w, x) ∈ (R,X ) of continuity of the CDF in w. Then, the conditional quantile

function Qm(x,αi)|Xit (q|x) is identified from Fm(x,αi)|Xit (w|x).

15A random variable Y is a convolution of independent random variables A and U if Y = A+ U .
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Finally, the structural function is identified for all x ∈ X and α ∈ (0, 1) by noticing that

Qm(x,αi)|Xit (α|x) = m
(
x,Qαi|Xit (α|x)

)
= m (x, α) , (5)

where the first equality follows by the property of quantiles and Assumptions ID(vii), while

the second equality follows from the normalization Assumption RE(ii).1617 �
To gain some intuition for the first step of the proof, consider the special case when Ui1

and Ui2 are identically and symmetrically distributed, conditional on Xi2 = Xi1 = x for all

x ∈ X . Then, for any x ∈ X , the conditional characteristic function of Yi2 − Yi1 equals

φYi2−Yi1 (s|Xi2 = Xi1 = x) = E [exp {is (Yi2 − Yi1)} |Xi2 = Xi1 = x]

= E [exp {is (Ui2 − Ui1)} |Xi2 = Xi1 = x]

= φU (s|x)φU (−s|x) = φU (s|x)2 ,

(6)

where φU (s|x) denotes the characteristic function of Uit, conditional on Xit = x. Since Uit
has a symmetric conditional distribution, φU (s|x) is symmetric in s and real valued. Thus,

φU (s|x) is identified, because φYi2−Yi1 (s|Xi2 = Xi1 = x) is identified from data. Once φU (s|x)

is known, the structural function m (x, α) is identified by following steps 2 and 3 of the proof.

Now consider the fixed effects model, i.e. the model where the unobserved heterogeneity

αi and covariates Xit can be correlated. A support assumption is needed to identify the fixed

effects model. For any event ϑ, define Sαi {ϑ} to be the support of αi, conditional on ϑ.

Assumption FE. (i) m (x, α) is strictly increasing in α; (ii) for some x ∈ X the normaliza-

tion m (x, α) = α for all α is imposed; (iii) Sαi
{(
Xit, Xi(−t)

)
= (x, x)

}
= Sαi {Xit = x} for

all x ∈ X and t ∈ {1, 2}.

Assumption FE(i) is standard in the analysis of nonparametric models with endogeneity

and guarantees invertibility of function m (x, α) in the second argument. Assumption FE(ii)

is a mere normalization given Assumptions ID(viii) and FE(i). Assumption FE(iii) requires

that the "extra" conditioning on Xiτ = x does not reduce the support of αi. A conceptually

similar support assumption is made by Altonji and Matzkin (2005). Importantly, neither their

exchangeability assumption nor the index function assumption of Bester and Hansen (2007)

are needed.
16 In fact, the proof may be obtained in a shorter way. The first step identifies the conditional distribution

of m (x, αi), given the event Xi1 = Xi2 = x, and hence identifies Qm(x,αi)|Xi1,Xi2
(q|x, x). Then, similar to (5)

one obtains
Qm(x,αi)|Xi1,Xi2

(q|x, x) = m
(
x,Qαi|Xi1,Xi2

(α|x, x)
)
= m (x, α) .

The proof of the theorem is presented in the three steps to keep it parallel to the proof of identification of
the correlated random effects model in the next theorem.
17When Xit contains continuosly distributed components the proof uses conditioning on probability zero

events. Section 6.3 in the Appendix formally establishes that this conditioning is valid under Assumption
ID(ix).
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Theorem 2. Suppose Assumptions ID and FE(i)-(ii) hold. Then, in model (1) the struc-

tural function m (x, α) and the conditional and unconditional distributions of the unobserved

heterogeneity Fαi (α|Xit = x) and Fαi (α), and the idiosyncratic disturbances FUit (u|Xit = x)

are identified for all x ∈ X , α ∈ Sαi {(Xit, Xiτ ) = (x, x)}, u ∈ R, and t ∈ {1, 2}.
If in addition Assumption FE(iii) is satisfied, the functions m (x, α) and Fαi (α|Xit = x)

are identified for all x ∈ X , α ∈ Sαi {Xit = x}, and t ∈ {1, 2}.

Proof. 1. Identify the conditional distribution of Uit given Xit exactly following the first step

of the proof of Theorem 1. In particular, the conditional characteristic functions φUit(s|Xit = x)

are identified for all t ∈ {1, 2}.
2. Take any x ∈ X and note that the conditional characteristic functions of Yi1 and Yi2,

given the event (Xi1, Xi2) = (x, x) satisfy

φYi1 (s|Xi1 = x,Xi2 = x) = φm(Xi1,αi) (s|Xi1 = x,Xi2 = x)φUi1 (s|Xi1 = x) ,

φYi2 (s|Xi1 = x,Xi2 = x) = φαi (s|Xi1 = x,Xi2 = x)φUi2 (s|Xi2 = x) ,

where Assumption FE(ii) is used in the second line. The conditional characteristic functions

of Yit on the left-hand sides of the equations are identified from data, while the function

φUit (s|Xit = x) is identified in step 1 of the proof. Due to Assumption ID(iv), φUit (s|x) 6= 0

for all s ∈ R, x ∈ X , and t ∈ {1, 2}. Thus, we can identify the following conditional

characteristic functions:

φm(x,αi) (s|Xi1 = x,Xi2 = x) =
φYi1 (s|Xi1 = x,Xi2 = x)

φUi1 (s|Xi1 = x)
, (7)

φαi (s|Xi1 = x,Xi2 = x) =
φYi2 (s|Xi1 = x,Xi2 = x)

φUi2 (s|Xi2 = x)
. (8)

As explained in the proof of Theorem 1, these conditional characteristic functions uniquely

determine the quantile function Qm(x,αi) (q|Xi1 = x,Xi2 = x) and the cumulative distribution

function Fαi|Xi1,Xi2 (a|x, x).

3. Then, the structural function m (x, α) is identified by

Qm(x,αi)|Xi1,Xi2
(
Fαi|Xi1,Xi2 (a|x, x) |x, x

)
= m

(
x,Qαi|Xi1,Xi2

(
Fαi|Xi1,Xi2 (a|x, x) |x, x

))
= m (x, a) , (9)

where the first equality follows by the property of quantiles and Assumption FE(i) and the

second equality follows from the definition of the quantile function and Assumption ID(viii).

Next, consider identification of Fαi (α|Xit = x). Similar to step 2, function φYit (s|Xit = x)

10



is identified from data and hence

φm(Xit,αi) (s|Xit = x) = φYit (s|Xit = x)
/
φUit (s|Xit = x) (10)

is identified. Hence, the quantile function Qm(x,αi)|Xit (q|x) is identified for all x ∈ X , q ∈
(0, 1), and t ∈ {1, 2}. Then, by the property of quantiles

Qm(Xit,αi)|Xit (q|x) = m
(
x,Qαi|Xit (q|x)

)
for all q ∈ (0, 1) .

Thus, using Assumption FE(i) the conditional distribution of αi is identified by

Qαi|Xit (q|x) = m−1
(
x,Qm(Xit,αi)|Xit (q|x)

)
, (11)

wherem−1 (x,w) denotes the inverse ofm (x, α) in the second argument, which is identified for

all α ∈ Sαi {Xit = x} when Assumption FE(iii) holds. Finally, one identifies the conditional
cumulative distribution function Fαi|Xit (a|x) by inverting the quantile function Qαi|Xit (q|x).

Then, the unconditional cumulative distribution function is identified by∫
Fαi (a|Xit = x) fXit (x) dx,

where the conditional density fXit (x) is identified directly from data. �

Remark 1. Function m (x, α) and the distribution of αi depend on the choice of x. However,

it is easy to show that function

h (x, q) ≡ m (x,Qαi (q))

does not depend on the choice of normalization x. The function h (x, q) is of interest for

policy analysis. In the union membership example, the value h (1, 0.5)−h (0, 0.5) is the union

membership premium for a person with median skill level.

Remark 2. Assumption FE(iii) may fail in some applications. In this case Theorem 2 secures
point identification of function m (x, α) for all α ∈ Sαi {(Xi1, Xi2) = (x, x)}, while the set
Sαi {(Xi1, Xi2) = (x, x)} is a strict subset of the set Sαi {Xi1 = x}. However, it is likely that[
Qαi

(
q|Xi1 = x

)
, Qαi (q|Xi1 = x)

]
⊂ Sαi {(Xi1, Xi2) = (x, x)} for some small value q and a

large value q such that 0 ≤ q < q ≤ 1. In other words, it is likely that even when Assumption

FE(iii) fails, one obtains identification of the function m (x, α) (and correspondingly h (x, q))

for most values of α (and q) except the most extreme ones.18

18Consider the union wage premium example. Suppose that individuals with unobserved skill level α never
join the union (for instance, because α is too low). Then α ∈ Sαi {Xi1 = 0}, but α 6∈ Sαi {(Xi1, Xi2) = (0, 1)}.
In this case, failure of identification is the property of the economic data and not of the model. The population
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Remark 3. The third steps of Theorems 1 and 2 can be seen as the distributional gener-
alizations of between- and within-variation analysis, respectively. The works of Altonji and

Matzkin (2005) and Athey and Imbens (2006) use distributional manipulations similar to the

third step of Theorem 2. However, their models contain only a scalar unobservable and hence

the quantile transformations apply directly to the observed distributions of outcomes. The

method of this paper instead filters out the idiosyncratic disturbances at the first stage, and

only after that uses between- or within-variation for identification.

Remark 4. Time effects can be added into the model, i.e. the model

Yit = m (Xit, αi) + ηt (Xit) + Uit (12)

is identified. Indeed, normalize η1 (x) = 0 for all x ∈ X , then for any t > 1 time effects ηt (x)

are identified from

E [Yit − Yi1|Xit = Xi1 = x] = E [Uit + ηt (Xit)− Ui1|Xit = Xi1 = x] = ηt (x) .

Once the time effects are identified, identification of the rest of the model proceeds as described

above, except the random variable Yit is replaced by Yit − ηt (Xit).

Remark 5. The identification strategies of Theorems 1 and 2 require that the joint density of
(Xi1, Xi2) is positive at (x, x), i.e. fXit,Xiτ (x, x) > 0, see Assumption ID(vii). In some situa-

tions this may become a problem, for example, if an individual’s age is among the explanatory

variables. Suppose that the joint density f(Zit,Ziτ ) (z, z) = 0, where Zit are some explana-

tory variables, different from the elements of Xit. Assume that αi and Zi are independent,

conditional on Xi, and E [Ui|Xi, Zi] = 0. The following model is identified:

Yit = m (Xit, αi) + g (Xit, Zit) + Uit.

Note that the time effects ηt (x) of the model (12) are a special case of g (x, z) with Zit = t. To

separate the functions m (·) and g (·), impose the normalization g (x, z0) ≡ 0 for some point

z0 and all x ∈ X . Then, identification follows from the fact that

g (x, z) = E [Yit − Yiτ |Xit = Xiτ = x, Zit = z, Ziτ = z0] ,

under the assumption that the conditional expectation of interest is observable. Then, define

Ỹit = Yit − g (Xit, Zit) and proceed as before with Ỹit instead of Yit.

contains no individuals with skill level α holding union jobs, and hence there is no way of identifying the union
wage for people with such skill level (at least without imposing strong assumptions permitting extrapolation,
such as functional form assumptions).
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Remark 6. In some applications the support of the covariates in the first time period Xi1

is smaller than the support of covariates in the second period. For instance, suppose Xit is

the treatment status (0 or 1) of an individual i in period t and no one is treated in the first

period, but some people are treated in the second period. Then, the event Xi1 = Xi2 = 0 has

positive probability, but there are no individuals with Xi1 = Xi2 = 1 in the population, thus

Assumption ID(vi) is violated. A solution is to assume that the idiosyncratic disturbances Uit
are independent of the treatment status Xit. Then, the distribution of the disturbances Uit is

identified by conditioning on the event Xi1 = Xi2 = 0 and the observations with Xi1 = Xi2 = 1

are not needed. Identification of the structural function m (x, α) only requires conditioning on

the event {Xi0 = 0, Xi1 = 1}, which has positive probability.

Remark 7. Assumption ID(ii) does not permit serial correlation of the disturbances. It is
possible to relax this assumption. Section 6.2 in the Appendix shows how to identify model

(1) when the disturbance Uit follows AR(1) or MA(1) processes. The identification argument

requires panel data with three time periods. It is important to note that the assumption of

conditional independence between the unobserved heterogeneity αi and the disturbances Uit is

still a key to identification. However, this assumption requires some further restrictions re-

garding the initial disturbance Ui1. As discussed in Section 6.2, in panel models with serially

correlated disturbances, the initial disturbance Ui1 and the unobserved heterogeneity αi can be

dependent when the past innovations are conditionally heteroskedastic. On the one hand, due

to conditional heteroskedasticity, the initial disturbance Ui1 depends on the past innovations

and hence on the past (unobserved) covariates. On the other hand, the unobserved heterogene-

ity αi may also correlate with the past covariates and hence with the initial disturbance Ui1.

Section 6.2 provides assumptions that are suffi cient to guarantee the conditional independence

of αi and Ui1.

Remark 8. The results of this section can be extended to the case of misclassified discrete
covariates if the probability of misclassification is known or can be identified from a validation

dataset. Such empirical settings have for example been considered by Card (1996). When the

probability of misclassification is known, it is possible to back out conditional characteristic

functions of (Yi1, Yi2) given the true values of covariates (φYi1,Yi2 (s1, s2|X∗i1, X∗i2)) from the

conditional characteristic functions of (Yi1, Yi2) given the misclassified values of covariates

(φYi1,Yi2 (s1, s2|Xi1, Xi2)). Once the characteristic functions φYi1,Yi2 (s1, s2|X∗i1, X∗i2) are iden-
tified the identification of function m (x, α) proceeds as in the proofs of Theorems 1 and 2

The assumptions and the details of identification strategy are presented in Section 6.4 in the

Appendix.

Remark 9. This paper aims to impose minimal assumptions on function m (x, α) and the

conditional distribution of m (x, αi). The original result of Kotlarski (1967) requires the as-

sumption that the characteristic function φm(x,αi) (·|Xit = x) is nonvanishing. This assump-
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tion may be violated, for instance, when m (x, αi) has a discrete distribution. Lemma 1 avoids

imposing this assumption on the distribution of m (x, αi).

3 Estimation

The proofs of Theorems 1 and 2 are constructive and hence suggest a natural way of estimating

the quantities of interest. Conditional characteristic functions are the building blocks of the

identification strategy. In Section 3.1 they are replaced by their empirical analogs to construct

estimators. Essentially, the estimation method requires performing deconvolution conditional

on the values of the covariates.

When the covariates are discrete, estimation can be performed using the existing decon-

volution techniques. The sample should be split into subgroups according to the values of the

covariates and a deconvolution procedure should be used to obtain the estimates of neces-

sary cumulative distribution functions, see the expressions for the estimators m̂RE (x, α) and

m̂FE (x, α) below. There is a large number of deconvolution techniques in statistics literature

that can be used in this case. For example, the kernel deconvolution method is well studied,

see the recent papers of Delaigle, Hall, and Meister (2008) and Hall and Lahiri (2008) for the

description of this method as well as for a list of alternative approaches.19

In contrast, when the covariates are continuously distributed one needs to use a conditional

deconvolution procedure. To the best of my knowledge this is the first paper to propose

conditional deconvolution estimators as well as to study their statistical properties.

Section 3.1 presents estimators of conditional the cumulative distribution functions and the

conditional quantile functions by means of conditional deconvolution. Section 3.1 also provides

estimators of the structural functionm (x, α) and the conditional distribution of heterogeneity

αi. Importantly, the estimators of the structural functions are given by an explicit formula

and require no optimization. Section 3.2 derives the rates of convergence for the proposed

estimators. As a by-product of this derivation, the section obtains the rates of convergence

of the proposed conditional cumulative distribution and quantile function estimators in the

problem of conditional deconvolution.

In this section T can be 2 or larger. All limits are taken as n → ∞ for T fixed. For

simplicity, the panel dataset is assumed to be balanced. To simplify the notation below,

xtτ stands for (xt, xτ ). In addition, the conditioning notation "|xt" and "|xtτ" should be,
correspondingly, read as "conditional on Xit = xt" and "conditional on (Xit, Xiτ ) = (xt, xτ )".

Thus, for example, Fm(xt,αi) (ω|xtτ ) means Fm(αi,xt)|Xit,Xiτ (ω|xt, xτ ).

19The number of econometric applications of deconvolution methods in econometrics is small but growing; an
incomplete list includes Horowitz and Markatou (1996), Li and Vuong (1998), Heckman, Smith, and Clements
(1997), Schennach (2004a), Hu and Ridder (2005), and Bonhomme and Robin (2008).
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3.1 Conditional CDF and Quantile Function Estimators

Remember that the conditional characteristic function φYit (s|xt) is simply the conditional
expectation; φYit (s|xt) = E [ exp (isYit)|Xit = xt]. Therefore, it is natural to estimate it by

the Nadaraya-Watson kernel estimator20

φ̂Yit (s|xt) =

∑n
i=1 exp (isYit)KhY (Xit − xt)∑n

i=1KhY (Xit − xt)
,

where hY → 0 is a bandwidth parameter, Kh (·) ≡ K (·/h) /h and K (·) is a standard kernel
function.21

When the conditional distribution of Uit is assumed to be symmetric and the same across

t, formula (6) identifies its characteristic function. In this case φU (s|x) = φUit (s|Xit = x) is

the same for all t and can be estimated by

φ̂
S

U (s|x) =

∣∣∣∣∣
∑T−1

t=1

∑T
τ=t+1

∑n
i=1 exp {is (Yit − Yiτ )}KhU (Xit − x)KhU (Xiτ − x)∑T−1

t=1

∑T
τ=t+1

∑n
i=1KhU (Xit − x)KhU (Xiτ − x)

∣∣∣∣∣
1/2

,

where bandwidth hU → 0. If the researcher is unwilling to impose the assumptions of symme-

try and distributional equality across the time periods, an alternative estimator of φUit (s|xt)
can be based on the empirical analog of equation (A.1):

φ̂
AS

Uit (s|xt) =
1

T − 1

T∑
τ=1
τ 6=t

exp

{
i

∫ s

0

∑n
i=1 Yite

iξ(Yit−Yiτ )KhU (Xit − xt)KhU (Xiτ − xt)∑n
i=1 e

iξ(Yit−Yiτ )KhU (Xit − xt)KhU (Xiτ − xt)
dξ

−is
∑n

i=1 YitKhY (Xit − xt)∑n
i=1KhY (Xit − xt)

}
.

In what follows an estimator of φUit (s|xt) is written as φ̂Uit (s|xt) and means either φ̂
S

Uit (s|xt)
or φ̂

AS

Uit (s|xt) depending on the assumptions that the researcher imposes about Uit.
Using (10), the conditional characteristic function φm(xt,αi)(s|xt) can be estimated by

φ̂m(αi,xt)(s|xt) = φ̂Yit(s|xt)/φ̂Uit(s|xt). Then, the goal is to estimate the conditional cumulative
distribution functions Fm(xt,αi)(ω|xt) and the corresponding quantile functions Qm(xt,αi)(q|xt)
20 In this section all covariates are assumed to be continuous. As usual, estimation in the presence of discrete

covariates can be performed by splitting the sample into subsamples, according to the values of the discrete
covariates. Naturally, the number of discrete covariates does not affect the rates of convergence. When the
model does not contain any continuous covariates the standard (unconditional) deconvolution procedures can
be used (see for example Fan, 1991).
21As usual, the data may need to be transformed so that all the elements of the vector of covariates Xit have

the same magnitude.
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for each t. The estimator of Fm(xt,αi)(ω|xt) can be based on equation (4):

F̂m(xt,αi) (ω|xt) =
1

2
−
∫ ∞
−∞

e−isω

2πis
φw (hws)

φ̂Yit (s|xt)
φ̂Uit (s|xt)

ds, (13)

where φw (·) is the Fourier transform of a kernel function w (·) and hw → 0 is a bandwidth

parameter. The kernel function w (·) should be such that its Fourier transform φw (s) has

bounded support. For example, the so-called sinc kernel wsinc (s) = sin (s) / (πs) has Fourier

transform φwsinc (s) = I (|s| ≤ 1). More details on φw (·) are given below. Use of the smooth-
ing function φw (·) is standard in the deconvolution literature, see for example Fan (1991) and
Stefanski and Carroll (1990). The smoothing function φw (·) is necessary because deconvolu-
tion is an ill-posed inverse problem. The ill-posedness manifests itself in the poor behavior of

the ratio φ̂Yit (s|xt) /φ̂Uit (s|xt) for large |s|, since both φUit (s|xt) and its consistent estimator
φ̂Uit (s|xt) approach zero as |s| → ∞.

The estimator of Fm(xt,αi) (ω|xtτ ) is similar to (13). Define

φ̂Yit (s|xtτ ) =

∑n
i=1 exp {isYit}KhY (Xit − xt)KhY (Xiτ − xτ )∑n

i=1KhY (Xit − xt)KhY (Xiτ − xτ )
.

Then, the estimator F̂m(xt,αi) (ω|xtτ ) is exactly the same as F̂m(xt,αi) (ω|xt) except φ̂Yit (s|xt)
is replaced by φ̂Yit (s|xtτ ). Note that the choice of bandwidth hY is different for φ̂Yit (s|xt)
and φ̂Yit (s|xtτ ). Below, hY (d) stands for the bandwidth used for estimation of φ̂Yit (s|xt) and
φ̂Yit (s|xtτ ), respectively, when d = p and d = 2p, where p is the number of covariates, i.e. the

length of vector Xit.

Conditional quantiles of the distribution of m (xt, αi) can be estimated by the inverse

of the corresponding conditional CDFs. The estimates of CDFs can be non-monotonic,

thus a monotonized version of CDFs should be inverted. This paper uses the rearrange-

ment technique proposed by Chernozhukov, Fernandez-Val, and Galichon (2007). Function

F̂m(xt,αi) (ω|xt) is estimated on a fine grid22 of values ω and the estimated values of F̂m(xt,αi)
are then sorted in increasing order. The resulting CDF is monotone increasing by construction.

Moreover, Chernozhukov, Fernandez-Val, and Galichon (2007) show that this procedure im-

proves the estimates of CDFs and quantile functions in finite samples. Define F̃m(xt,αi) (ω|xt)
to be the rearranged version of F̂m(xt,αi) (ω|xt).

22 In practice, it is suggested to take a fine grid is taken on the interval
[
Q̂Yit|Xit

(δ|xt) , Q̂Yit|Xit
(1− δ|xt)

]
,

where Q̂Yit|Xit
(q|xt) is the estimator of QYit|Xit

(q|xt), i.e. of the q-th conditional quantile of Yit given Xit = xt,
and δ is a very small number, such as 0.01. The conditional quantiles QYit|Xit

(q|xt) can be estimated by the
usual kernel methods, see for example Bhattacharya and Gangopadhyay (1990).
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The conditional quantile function Qm (q|xt) can then be estimated by

Q̂m(xt,αi) (q|xt) = min
ω

{
F̃m(xt,αi) (ω|xt) ≥ q

}
,

where ω takes values on the above-mentioned grid. Estimation ofQm(xt,αi) (ω|xtτ ) is analogous

to estimation of Qm(xt,αi) (ω|xt).
As always, it is hard to estimate quantiles of a distribution in the areas where the density

is close to zero. In particular, it is hard to estimate the quantiles in the tails of a distribution,

i.e. the so-called extreme quantiles. Therefore, it is suggested to restrict attention only to the

estimates of, say, 0.05-th to the 0.95-th quantiles of the distribution of m (xt, αi).23

Once conditional CDFs and Quantile Functions are estimated, formula (5) suggests the

following estimator of the structural function m (x, α) in the random effects model:

m̂RE (x, α) =
1

T

T∑
t=1

Q̂m(x,αi) (α|Xit = x) , α ∈ (0, 1) .

Note that compared to expression (5) the estimator m̂RE contains extra averaging across time

periods to improve finite sample performance. As usual x should take values from the interior

of set X to avoid kernel estimation on the boundary of the set X . As mentioned earlier, one
should only consider "not too extreme" values of α, say α ∈ [0.05, 0.95]. At the same time,

one does not have to estimate the conditional distribution of αi since in the random effect

model Qαi (q|xt) ≡ q for all q ∈ (0, 1) and xt ∈ X by Assumption RE(ii).

In the fixed effects model it is possible to use the empirical analog of equation (9) to

estimate m (x, α). Instead, a better procedure is suggested based on the following formula

that (also) identifies the function m (x, α). Following the arguments of the proof of Theorem

2 it is easy to show that for all x ∈ X , x2 ∈ X , t, and τ 6= t, the structural function can be

written as

m(x, a)=Qm(x,αi)|Xi,tτ
(
Fm(x2,αi)|Xi,tτ

(
Qm(x2,αi)|Xi,tτ

(
Fm(x,αi)|Xi,tτ

(
a
∣∣x, x2)∣∣x, x2)∣∣x, x2)∣∣x, x2),

where Xi,tτ stands for (Xit, Xiτ ) to shorten the notation. Note that x2 in the above formula

only enters on the right-hand side but not on the left-hand side of the equation. Thus, the

23Of course, confidence intervals should be used for inference. However, derivation of confidence intervals
for extreme quantiles is itself a hard problem and is not considered in this paper.
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estimator proposed below averages over x2:

m̂FE (x, a) =
1

T (T − 1)

T∑
t=1

T∑
τ=1,τ 6=t

1

leb
(
X
)× (14)∫

X
Q̂m(x,αi)|Xi,tτ

(
F̃m(x2,αi)|Xi,tτ

(
Q̂m(x2,αi)|Xi,tτ

(
F̃m(x,αi)|Xi,tτ

(
a
∣∣x, x2)∣∣x, x2)∣∣x, x2)∣∣x, x2)dx2,

for all x ∈ X , where set X is a subset of X that does not include the boundary points of X ,
and the normalization factor leb

(
X
)
is the Lebesgue measure of set X . Averaging over x2,

t, and τ exploits the overidentifying restrictions that are present in the model. Once again,

the values of a should not be taken to be "too extreme". The set X is introduced to avoid

estimation at the boundary points. In practice, integration over x2 can be be substituted by

summation over a grid over X with the cell size of order hY (2p) or smaller. Then, instead of

leb
(
X
)
, the normalization factor should be the number of grid points.24

Note that the ranges and domains of the estimators in the above equations are bounded

intervals that may not be compatible. In other words, for some values of a and x2 the ex-

pression Q̂
(
F̃
(
Q̂
(
F̃ (a|x, x2)|x, x2

)∣∣∣x, x2)∣∣∣x, x2) cannot be evaluated because the value of
one of the functions F̂ (·) or Q̂ (·) at the corresponding argument is not determined (for some
very large or very small a). This can happen because the supports of the corresponding con-

ditional distributions may not be the same or, more likely, due to the finite sample variability

of estimators. Moreover, consider fixing the value of a and varying x2. It can be that for

some values of x2 the argument of one of the estimated functions F̃ (·) or Q̂ (·) corresponds
to extreme quantiles, while for other values of x2 the arguments of all estimated CDFs and

quantile functions correspond to intermediate quantiles. It is suggested to drop the values of

Q̂
(
F̃
(
Q̂
(
F̃ (a|x, x2) · · ·

)))
that rely on estimates at extreme quantiles from the averaging

and adjust the normalization factor correspondingly.25

Finally, using (11) the conditional quantiles of the distribution of αi is estimated by

Q̂αi (q|Xit = x) = m̂−1FE

(
x, Q̂m(x,αi)|Xit (q|x)

)
.

If the conditional distribution is assumed to be stationary, i.e. if Qαi (q|Xit = x) is believed

to be the same for all t then additional averaging over t can be used to obtain

Q̂αi (q|Xit = x) =
1

T

T∑
τ=1

m̂−1FE

(
x, Q̂m(x,αi)|Xiτ (q|x)

)
.

24When Xit is discrete one should substitute integration with the summation over the points of support of
the distribution of Xit.
25Note that m̂FE depends on the choice of x. In practice, it is suggested to take the value of x to be the

mode of the distribution of Xit because the variance of the kernel estimators is inversely proportional to the
density of Xit at a particular point.
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Then, by inverting the conditional quantile functions one can use the sample analog of the

formula Fαi (α) =
∫
X Fαi (α|xt) f (xt) dxt to obtain the unconditional CDF F̂αi (a) and the

quantile function Q̂αi (q). Then, the policy relevant function h (x, q), discussed in Remark 1,

can be estimated by ĥ (x, q) = m̂FE

(
x, Q̂αi (q)

)
.

3.2 Rates of Convergence of the Estimators

First, this section derives the rates of convergence of the conditional deconvolution estimators

F̂m(xt,αi) (ω|xt) and F̂m(xt,αi) (ω|xtτ ). Then, it provides the rates of convergence for the other

estimators proposed in the previous section.

Although the estimators of characteristic functions φ̂Yit (·) and φ̂Uit (·) proposed in the
previous section have typical kernel estimator form, several issues are to be tackled when

deriving the rate of convergence of the estimators of the CDFs F̂m(xt,αi) (·). First, as dis-
cussed in the previous section, for any distribution of errors Uit the characteristic function

φUit (s|x) approaches zero for large |s|, i.e. φUit (s|x)→ 0 as |s| → ∞. This creates a problem,
since the estimator of φUit (s|x) is in the denominator of the second fraction in (13). More-

over, the bias of the kernel estimator of the conditional expectation E [exp {isYit} |Xit = x]

grows with |s|. Thus, large values of |s| require special treatment. In addition, extra care
also needs to be taken when s is in the vicinity of zero because of the term 1/s in formula

(13). For instance, obtaining the rate of convergence of suprema of |φ̂Yit (s|x) − φYit (s|x) |
and |φ̂Uit (s|x) − φUit (s|x) | is insuffi cient to deduce the rate of convergence of the estimator
F̂m(xt,αi) (·). Instead, the lemmas in the appendix derive the rates of convergence for the
suprema of |s−1(φ̂Yit (s|x) − φYit (s|x))| and |s−1(φ̂Uit (s|x) − φUit (s|x))| over the expanding
set s ∈

[
−h−1w , 0

)
∪
(
0, h−1w

]
and all x. Then, these results are used to obtain the rate of

convergence of the integral in the formula for F̂m(xt,αi) (·).
The assumptions made in this section reflect the diffi culties specific to the problem of

conditional deconvolution. The first three assumptions are, however, standard:

Assumption 1. Fm(xt,αi) (ω|xt) and Fm(xt,αi) (ω|xtτ ) have kF ≥ 1 continuous absolutely in-

tegrable derivatives with respect to ω for all ω ∈ R, all xtτ ∈ X × X , and all t, τ 6= t.

For any set Z, denote DZ (k) to be the class of functions ϕ : Z → C with k continuous
mixed partial derivatives.

Assumption 2. (i) X ⊂Rp is bounded and the joint density f(Xt,Xτ ) (xtτ ) is bounded from

above and is bounded away from zero for all t, τ 6= t, and xtτ ∈ X ×X ; (ii) there is a positive
integer k ≥ 1 such that fXt (xt) ∈ DX

(
k
)
and f(Xt,Xτ ) (xtτ ) ∈ DX×X

(
k
)
.

Assumption 3. There is a constant γ > 2 such that supxtτ∈X×X E [|Yit|γ |xtτ ] is bounded for

all t and τ .
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Assumption 1 is only slightly stronger than the usual assumption of bounded derivatives.

The integer k introduced in Assumption 2(ii) is also used in Assumptions 4 and 5 below. The

value k should be taken so that these assumptions hold as well. It may be helpful to think of

k as of the "smoothness in xt (or xtτ )".

The rate of convergence of deconvolution estimators depends critically on the rate of

decrease of the characteristic function of the errors. Therefore, for all positive numbers s it

is useful to define the following function:

χ (s) = max
1≤t≤T

sup
(s,x)∈[−s,s]×X

1/
∣∣φUit (s|Xit = x)

∣∣ .
It is a well-known result that χ (s)→∞ as s→∞ for any distribution of Uit. Estimator (13)

contains 1/φ̂Uit (s|xt) as a factor, hence the rate of convergence of the estimator will depend
on the rate of growth of χ (s). The following two alternative assumptions may be of interest:

Assumption OS. χ (s) ≤ C
(

1 + |s|λ
)
for some positive constants C and λ.

Assumption SS. χ (s) ≤ C1
(

1 + |s|C2
)

exp
(
|s|λ /C3

)
for some positive constants C1, C2,

C3, and λ, but χ (s) is not bounded by any polynomial in |s| on the real line.

Assumption OS and SS are generalizations of, correspondingly, the ordinary-smooth and

super-smooth distribution assumptions made by Fan (1991). This classification is useful be-

cause the rates of convergence of the estimators of CDFs are polynomial in the sample size n

when Assumption OS holds, but are only logarithmic in n when Assumption SS holds.

The following example is used throughout the section to illustrate the assumptions:

Example 1. Suppose that Uit = σt (Xit) ξit, where σt (x) is the conditional heteroskedasticity

function and ξit are i.i.d. (across i and t) random variables with probability distribution Lξ.
Assume that infx∈X ,1≤t≤T σt (x) > 0 and supx∈X ,1≤t≤T σt (x) < ∞. In this case φUit (s|x) =

φξit (σt (x) s).

For instance, Assumption OS is satisfied for Example 1 when Lξ is a Laplace or Gamma
distribution. In the former case, φUit (s|x) =

(
1 + σ2t (x) s2

)−1, hence Assumption OS holds
with λ = 2. Similarly, when Lξ is a Gamma distribution with γ > 0 and θ > 0 the conditional

characteristic function has the form φUit (s|x) = (1− iθσt (x) s)−γ , and hence Assumption OS

holds with λ = γ.

When Lξ is normal in Example 1, Assumption SS is satisfied with λ = 2 because φUit (s|x) =

exp
(
−σ2t (x) s2/2

)
. Assumption SS is also satisfied with λ = 1 when Lξ has Cauchy or

Student-t distributions in Example 1.

Let α = (α1, . . . , αd) denote a d-vector of nonnegative integers and denote |α| = α1+ . . .+

αd. For any function ϕ (·) that depends on z ∈ Z ⊂ Rd (and possibly some other variables)
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define ∂αz ϕ (·) = ∂|α|ϕ (·)
/
∂zα11 . . . ∂zαdd . Function ϕ : S × Z → C, S ⊂ R, Z ⊂ Rd is said to

belong to class of functions DSZ (k) if it is k times continuously differentiable in z and there

is a constant C > 0 such that supz∈Z max|α|=l |∂αz ϕ (s, z)| ≤ C(1 + |s|l) for all l ≤ k and all

s ∈ S. The class of functions DSZ (k) is introduced because the k-th derivative of function

φm(xt,αi) (s|xt) with respect to xt contains terms multiplied by sl, with l no bigger than k.

Assumption 4. For all t and some constant ς > 0, φUit (s|xt) ∈ DRX
(
k
)
and ∂φUit (s|xt) /∂s ∈

D[−ς,ς]X
(
k
)
.

Assumption 5. For all t and τ , φm(xt,αi) (s|xt) ∈ DRX
(
k
)
, φm(xt,αi) (s|xtτ ) ∈ DRX×X

(
k
)
,

φm(xt,αi)−m(xτ ,αi) (s|xtτ ) ∈ DRX×X
(
k
)
, ∂φm(xt,αi) (s|xt) /∂s ∈ D[−ς,ς]X

(
k
)
, and

∂φm(xt,αi)−m(xτ ,αi) (s|xtτ ) /∂s ∈ D[−ς,ς]X×X
(
k
)
.

The assumptions on the smoothness of functions φm(xt,αi) (s|xt) , φm(xt,αi) (s|xtτ ), and

φUit (s|xt) are natural; these functions are conditional expectations that are estimated by
usual kernel methods. The presence of the terms containing sk in the k-th order Taylor

expansion of φYit (s|xt) and φUit (s|xt) causes the bias of estimators φ̂Yit (s|xt) and φ̂Uit (s|xt)
to be proportional to |s|k for large |s|.

To see why an assumption on smoothness of function φm(xt,αi)−m(xτ ,αi) (s|xtτ ) in xtτ is

needed, consider estimator φ̂
S

U (s|x) based on (6). The value of φm(xt,αi)−m(xτ ,αi) (s|xtτ ) is

close to unity when xt is close to xτ . Thus, one can obtain φUit−Uiτ (s|xtτ ) from the formula

φYit−Yiτ (s| (Xit, Xit) = xtτ ) = φUit−Uiτ (s|xtτ )φm(xt,αi)−m(xτ ,αi) (s|xtτ ) .

he assumption on smoothness of function φm(xt,αi)−m(xτ ,αi) (s|xtτ ) in xtτ controls how fast

φm(xt,αi)−m(xτ ,αi) (s|xtτ ) approaches unity when the distance between xt and xτ shrinks,

which is necessary to calculate the rate of convergence of φ̂
S

U (s|x). Note also that in (13),

φ̂Yit (s|xt) is divided by s while s passes through zero. Then, the analysis of [φ̂Yit (s|xt) −
φYit (s|xt)]/s requires assumptions regarding the behavior of derivatives ∂φm(xt,αi)(s|xt)/∂s
and ∂φUit(s|xt)/∂s in the neighborhood of s = 0 because φYit(s|xt) = φm(xt,αi)(s|xt)φUit(s|xt).

It is straightforward to check that Assumption 4 is satisfied in Example 1 if σt (x) ∈ DX
(
k
)

for all t and Lξ is Normal, Gamma, Laplace, or Student-t (with two or more degrees of
freedom).

Suffi cient conditions to ensure that Assumptions 4 and 5 hold are provided by Lemmas 2

and 3, respectively.

Lemma 2. Suppose there is a positive integer k, a constant C and a function M (u, x) such

that fUit (u|xt) has k continuous mixed partial derivatives in xt and max|α|≤k
∣∣∂αxtfUit (u|xt)

∣∣2 /
fUit (u|xt) ≤ M (u, xt) for all xt ∈ X and for almost all u ∈ R, and

∫∞
−∞M (u, x) du ≤ C for

all x ∈ X . Suppose also that the support of Uit, conditional on Xit = xt, is the whole real line

21



(and does not depend on xt) and that E
[
U2it|Xit = xt

]
≤ C. Then Assumption 4 is satisfied

with k = k.

For instance, the conditions of the lemma are easily satisfied by Example 1 when σt (x)

has k bounded derivatives for all t and all x ∈ X , and Lξ is Normal, Gamma, Laplace, or
Student-t (with three or more degrees of freedom).

The idea behind the conditions of the lemma is the following. The conditional characteris-

tic function is defined as φUit (s|xt) =
∫
Supp(Uit)

exp {isu} fUit|Xit (u|xt) du, where Supp (Uit) is

the support of Uit. Note that |exp {isu}| = 1. Suppose that for some k ≥ 1, all mixed partial

derivatives of function fUit|Xit (u|xt) in xt up to the order k are bounded. Also, suppose for a
moment that Supp (Uit) is bounded. Then all mixed partial derivatives of function φUit (s|xt)
in xt up to the k-th order are bounded. This is because for any α such that |α| ≤ k one

has
∣∣∂αxtφUit (s|xt)

∣∣ ≤ (∫Supp(Uit) du) ∣∣∂αxtfUit|Xit (u|xt)
∣∣. However, this argument fails when

the support of Uit is unbounded since
∫
Supp(Uit)

du = ∞. Thus, when Uit has unbounded
support one needs to impose some assumption about the relative sensitivity of the density

fUit|Xit (u|xt) to changes in xt compared to the magnitude of fUit|Xit (u|xt) in the tails. This
is the main assumption of Lemma 2.

Similar suffi cient conditions can be given for Assumption 5 to hold:

Lemma 3. Denote ω(s, xt, α) =m(xt, α)eism(xt,α). Suppose that functionsm(xt, α), fαi(α|xt),
and fαi (α|xtτ ) have k continuous mixed partial derivatives in, correspondingly, xt, xt, and

xtτ for all α and xtτ ∈ X × X . Suppose that max|α|≤k E[
∣∣∂αxtω (s, xt, αi)

∣∣2 |xtτ ] ≤ C
(
1 + sk

)2
for some constant C and for all s ∈ R and xtτ ∈ X ×X . Suppose the support of fαi (α|xt) is
(ψl (xt) , ψh (xt)), and that for each j ∈ {l, h}, t, and xt ∈ X either (a) ψj (xt) is infinite, or (b)

ψj(xt) has k continuous mixed partial derivatives in xt and max|α|≤k−1
∣∣∂αxtfαi(α|xt)∣∣∣∣α=ψj(xt)=

0. Suppose that max|α|≤k
(
∂αxtfαi (α|xt)

)2
/fαi (α|xt) ≤M (α, xt) for all α ∈ (ψl (xt) , ψh (xt)),

where
∫ ψh(xt)
ψl(xt)

M (α, xt) dα < C for all xt ∈ X . Finally, assume that analogous restrictions
hold for fαi (α|xtτ ).Then Assumption 5 is satisfied with k = k.

Lemma 3 extends Lemma 2 by allowing the conditional (on xt) support of random variable

(αi) to depend on xt. This extension requires assumptions on smoothness of support boundary

functions ψl (xt) and ψh (xt) in xt.

Assumption 6. Multivariate kernel K (v) has the form K (v) =
∏p
l=1 K̃ (vl), where K̃ (ξ) is

a univariate k-th order kernel function that satisfies
∫
|ξ|k K̃ (ξ) dξ < ∞,

∫
K̃2 (ξ) dξ < ∞,

and supξ∈R |∂K̃ (ξ) /∂ξ| <∞.

Assumption 7. (i) Kw (·) is a symmetric (univariate) kernel function whose Fourier trans-
form w (·) has support [−1, 1]. (ii) w (s) = 1 +O(|s|kF ) as s→ 0.
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Assumption 7(ii) implies that Kw (·) is a kF -th order kernel. For instance, one can take
w (s) = (1− |s|kF )rI (|s| ≤ 1) for some integer r ≥ 1.26

Assumption SYM. φUit (s|x) = φUit (−s|x) = φUiτ (s|x) for all t, τ , and all (s, x) ∈ R×X .

Assumption SYM is satisfied when Uit have the same symmetric conditional distribution

for all t. The estimator φ̂
S

Uit (s|x) is consistent when Assumption SYM holds and can be

plugged into the estimator F̂m(xt,αi) (·). If one is unwilling to impose Assumption SYM the

following assumption is useful:

Assumption ASYM. (i) There exist constants Cφ > 0 and bφ ≥ 0 such that for all s ∈ R
it holds that

sup
x∈X

∣∣∂ lnφUit (s|x) /∂s
∣∣ ≤ Cφ (1 + sbφ

)
,

and bφ = 0 when OS holds; (ii) function E
[
m (xt, αi) e

is(m(xt,αi)−m(xτ ,αi))|xtτ
]
belongs to

DRX×X
(
k
)
and ∂φUit (s|xt) /∂s ∈ DRX

(
k
)
.

Assumption ASYM is very mild. For instance, in Example 1 ASYM(i) is satisfied for Lξ
being Gamma, Laplace, Normal, or Student-t distributions. Imposing the condition bφ = 0

appears not to be restrictive for ordinary smooth distributions. The rates of convergence

can be derived without ASYM(i) using the results of Theorem 3 below; however, this case

seems to be of little practical interest and its analysis is omitted. ASYM(ii) is a very minor

extension of Assumptions 4 and 5. The conditions of Lemma 3 are suffi cient for ASYM(ii) to

hold. Below, for notational convenience, take bφ = 0 if Assumption SYM holds.

In the results below it is implicitly assumed that the estimator F̂m(xt,αi) (·) uses φ̂SUit (s|xt)
as an estimator of φUit (s|xt) when Assumption SYM holds. When Assumption ASYM holds,

φ̂
AS

Uit (s|xt) is used to estimate φUit (s|xt) in the estimator F̂m(xt,αi) (·). Thus, the derived rates
of convergence below are obtained for two different estimators of φUit (s|xt). The estimator
φ̂
S

Uit (s|xt) requires symmetry, but its rate of convergence is (slightly) faster than the rate of
convergence of estimator φ̂

AS

Uit (s|xt).
Note that the above assumptions allow the characteristic functions to be complex-valued

(under Assumption ASYM) and do not require that the characteristic functions have bounded

support.

Suppose that the bandwidths hY (p), hY (2p), hU , and hw satisfy the following assump-

tion:27

26Delaigle and Hall (2006) consider the optimal choice of kernel in the unconditional density deconvolution
problem. They find that the kernel with Fourier transform w (s) =

(
1− s2

)3
I (|s| ≤ 1) performs well in their

setting.

27 In principle one can allow the bandwidths hY (d) and hU to depend on s. This may improve the rate
of convergence of the considered estimators in some special cases, although it does not improve the rates
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Assumption 8. For d ∈ {p, 2p} the following hold: (i) min {nhU , nhY (d)} → ∞,
max {hU , hY (d) , hw} → 0, (ii) [log (n)]1/2 n1/γ−1/2 max{h−pU , [hY (d)]−d/2} → 0, (iii)

(log (n))γ−3/2 h−1w max{hpU , [hY (d)]d/2}n1/γ−1/2 → 0, (iv) ([log (n) /(nh2pU )]1/2+h−rw hkU )h
−bφ−1
w

× χ2
(
h−1w

)
→ 0, and (v) if ASYM holds hY (p) = O (hU/hw) and hU = o(h

1/2
Y ).

Assumptions 8(ii) and (iii) are used in conjunction with Bernstein’s inequality and essen-

tially require that the tail of Yit is suffi ciently thin compared to the rate of convergence below.

Notice that the larger γ in Assumption 3 is, the easier it is to satisfy Assumption 8. As-

sumption 8(iv) ensures that
[
φ̂Uit (s|xt)− φUit (s|xt)

]
/φUit (s|xt) = op (1), which is necessary

because of the term φ̂Uit (s|xt) in the denominator in the formula for F̂m(xt,αi) (·). Assumption
8(v) is very mild and assures that the second fraction in the definition of estimator φ̂

AS

Uit (·)
does not dominate the first one. Assumptions 8(i) and (iv) are necessary for consistency. On

the other hand, Assumptions 8(ii),(iii), and (v) are not necessary for obtaining consistency

and the rate of convergence can be derived without imposing these assumptions. However,

the resulting expression for the rate of convergence is more complicated.

The following theorem gives convergence rates for the estimators F̂m(xt,αi) (ω|xt) and
F̂m(xt,αi) (ω|xtτ ).

Theorem 3. Suppose Assumptions ID(i-vi), 1-8, and either SYM or ASYM hold. Then,

sup
(ω,xtτ )∈R×X×X

∣∣∣F̂m(xt,αi) (ω|xtτ )− Fm(xt,αi) (ω|xtτ )
∣∣∣ = Op (βn (2p)) and

sup
(ω,xt)∈R×X

∣∣∣F̂m(xt,αi) (ω|xt)− Fm(xt,αi) (ω|xt)
∣∣∣ = Op (βn (p)) ,

where

βn (d) = hkFw +

([
log (n)

/(
nhdY (d)

)]1/2
+ h

−(k−1)
w hkY (d)

)
h−1w χ

(
h−1w

)
+
(

[log (n) /(nh2pU )]1/2 + h−rw hkU

)
max

{
1, h

kF−1−bφ
w χ2

(
h−1w

)}
,

where r = k − 1 under SYM and r = k under ASYM, and the set X is any set that satisfies

X + Bp
εX (0) ⊂ X , where Bp

εX (0) is a p-dimensional ball around 0p with an arbitrary small

radius εX > 0.28

The rate of convergence βn (d) has three distinctive terms. The first term is the regu-

larization bias term. This bias is present because (13) is the inverse Fourier transform of

φw (s) φ̂m (s|·), the regularized version of φ̂m (s|·), and not of the true characteristic function

of convergence in the leading cases. Allowing the bandwidths to depend on s is also unappealing from the
practical standpoint, since one would need to provide "bandwidth functions" hU (s) and hY (d, s), which appears
impractical.
28Here set X +BpεX (0) is the set of points

{
x = x1 + x2 : x1 ∈ X , x2 ∈ BpεX (0)

}
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φm (s|·). The second and the third terms of βn (d) contain parentheses, which are the familiar

expressions for the rate of convergence of kernel estimators of φ̂Y (s|·) and φ̂Uit (s|xt), corre-
spondingly. The h−1w and χ

(
h−1w

)
parts of the second term of βn (d) come from the integration

over s and division by φ̂Uit (s|xt), respectively. The third term of βn (d) is the error from the

estimation of φ̂Uit (s|xt), i.e. essentially the error from estimation of the integral operator in

the ill-posed inverse problem. While the term φ̂Uit (s|xt) magnifies estimation error for large
s, larger kF helps reducing this error. Yet, these effects play a role only for large s, and not

for small s (the rate of convergence of φ̂Uit (s|xt) for s of order one does not depend on kF or
the function χ (s)). This is the logic behind the max {. . .} part of the third term of βn (d);

see also Remark 11 below.

Parameters d and r are introduced because the result of Theorem 3 covers four different

estimators: estimators F̂m(xt,αi) (ω|xtτ ) and F̂m(xt,αi) (ω|xt) (corresponding to d = 2p and

d = p, respectively), each using φ̂Uit (s|x) = φ̂
S

Uit (s|x) (when Assumption SYM holds; r = k)

or φ̂Uit (s|x) = φ̂
AS

Uit (s|x) (when Assumption ASYM holds; r = k − 1). Assumption ASYM

is more general than Assumption SYM. However, the corresponding estimator φ̂
AS

Uit (s|x) con-

tains integration, while estimator φ̂
S

Uit (s|x) does not. As a result, the rate of convergence of

estimator φ̂
S

Uit (s|x) is slightly faster than the rate of convergence of estimator φ̂
AS

Uit (s|x). This

difference in the rates of convergence is reflected in the rate of convergence βn (d).

The sole purpose of introducing set X in the statement of the theorem is to avoid con-

sidering estimation at the boundary points of the support of Xit, where the estimators are

inconsistent. For example, when X = [a, b] one can take X = [a+ εX , b− εX ], εX > 0. In

fact, it is easy to modify the estimators F̂m(xt,αi) (ω|xt) and F̂m(xt,αi) (ω|xtτ ) so that the rate

of convergence result will hold for all xtτ ∈ X ×X . For instance, one can follow the boundary
kernel approach, see, for example, Müller (1991).

The next theorem shows what the rate of convergence βn (d) becomes when the distur-

bances Uit have an ordinary smooth distribution and the bandwidths hw, hU , and hY (d) are

chosen optimally. Define

k̃F (d) = 1 + λ+
[
2λ (2p− d) + 2pr − dk + 4p− d

]/ (
2k + d

)
and

k̆F = λ
(
2k/p+ 1

)
+ k − 2− 2r,

and note that for d = 2p under Assumption SYM, k̃F (d) simplifies to k̃F (2p) = 1 + λ. The

following assumption is a suffi cient condition to ensure that Assumption 8 is satisfied by the

optimal bandwidths hw, hU , and hY (d).

Assumption 9. (i) γ > 6 (p+ 1) (p+ 2) / (p+ 6); (ii) if p ≥ 3 then, in addition, kF ≥ k

when kF ≥ k̃F (d), and λ ≥ k when kF < k̃F (d).29

29The above assumption is only a suffi cient condition. The restriction on the number of bounded moments
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Theorem 4. Suppose Assumption OS holds with λ ≥ 1, and also Assumptions ID(i-vi), 1-7,

9, and either SYM or ASYM hold. Then, with the appropriately chosen bandwidths,

sup
(ω,xtτ )∈R×X×X

∣∣∣F̂m(xt,αi) (ω|xtτ )− Fm(xt,αi) (ω|xtτ )
∣∣∣ = Op

(
βOSn (2p)

)
and

sup
(ω,xt)∈R×X

∣∣∣F̂m(xt,αi) (ω|xt)− Fm(xt,αi) (ω|xt)
∣∣∣ = Op

(
βOSn (p)

)
,

where

βOSn (2p) =

{
(log (n) /n)ρ

U
n , when kF < k̃F (2p) and kF < 2λ+ 1,

(log (n) /n)ρn(2p) , otherwise,

βOSn (p) =


(log (n) /n)ρ

U
n , when kF ≤ k̃F (p) and kF ≤ 2λ+ 1,

(log (n) /n)ρn(p) , when kF > k̃F (p) and kF ≤ 2λ+ 1,

(log (n) /n)ρn(p) , when kF ≤ k̆F and kF > 2λ+ 1,

(log (n) /n)ρ
U
n , when kF > k̆F and kF > 2λ+ 1,

ρn (d) =
1

2

kF

kF + 1 + λ+
(
k − 1

)
d/
(
2k + d

) 2k

2k + d
, (15)

ρUn =
1

2

kF

max
{
kF , 2λ+ 1

}
+ 1 + rp/

(
k + p

) 2k

2k + 2p
.

The corresponding values of hU , hY (d), and hw are given in the proof of the theorem.

Remark 10. The rate of convergence (15) is intuitive. If one (formally) takes d = 0, the

rate of convergence becomes kF /
(
2kF + 2 + 2λ

)
, which is the rate of convergence (except for

the log (n) factor) obtained by Fan (1991) for the unconditional deconvolution problem with

known distribution of errors Uit (see his Remark 3). On the other hand, suppose function

Fm(xt,αi) (ω|xt) is very smooth with respect to ω, i.e. suppose that kF → ∞ while all the

other parameters in (15) are fixed. In this case ρn (d) → k/
(
2k + d

)
, which is the rate of

convergence obtained by Stone (1982) for nonparametric regression/density estimation. Thus,

formula (15) combines conditional (Stone, 1982) and deconvolution (Fan, 1991) aspects of

considered problem.

Remark 11. Some discussion of the different cases for the rate of convergence in Theorem
4 is in order. The error in estimation of Fm(xt,αi) (·) comes from the estimation error of the

estimators φ̂Yit (·) and φ̂Uit (·). It will be convenient to write βn (d) as βn (d) = hkFw +TY (d)+

γ in fact corresponds to the least smooth case kF = 1; the necessary number of bounded moments γ can be
reduced if Fm (w|·) has more than one bounded derivative in w (i.e. kF > 1). Condition (ii) is technical and
does not appear to be restrictive. Note that condition kF < k̃F (d) means that λ is relatively larger than kF ,
therefore it appears that the condition λ ≥ k imposed in this case is mild.
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TU , where the terms TY (d) and TU correspond to the stochastic errors of estimation of φYit (·)
and φUit (·), respectively. The rate of convergence ρn (d) corresponds to the case when TY (d)

is larger than TU (asymptotically). That is, the rate of convergence ρn (d) (and the implied

optimal bandwidth hw) balances hFw and TY (d). Since the estimation error of φ̂Uit (s|xt) is
smaller in this case, the rate of convergence ρn (d) is the same as in the hypothetical case

when the conditional distribution of Uit were known and φ̂Uit (s|xt) replaced by φUit (s|xt) in
(13). On the other hand, when TU dominates TY (d), the rate of convergence is ρUn (i.e. ρ

U
n

balances hkFw and TU ).

Consider the estimator F̂m(xt,αi) (ω|xtτ ). When kF is small, the estimation error is given

by the error of estimation of φUit (s|xt) (and the rate of convergence of F̂m(xt,αi) (ω|xtτ ) is

ρUn ). Note that larger kF reduces TU , but does not affect TY (2p). Thus, for suffi ciently large

kF the term TU becomes small and the rate of convergence of the estimator F̂m(xt,αi) (ω|xtτ )

becomes ρn (2p).

The situation is slightly more complicated for the estimator F̂m(xt,αi) (ω|xt). As in the
previous case, the estimation error is dominated by TU when kF is small, but is dominated by

TY (p) for larger kF . However, in contrast to the previous case, for very large kF the rate of

convergence is again determined by TU . To see why this is the case, note that for d = p the

term TY (p) is "p-dimensional", i.e. the rate of convergence in the parentheses of the second

term βn (p) corresponds to the estimation of a conditional mean, given Xit = xt, where Xit

is p-dimensional. In contrast, the parentheses of the third term of βn (p) correspond to the

estimation of a conditional mean, given Xit = Xiτ = xt, thus the third term of βn (p) is "2p-

dimensional" and the parenthesis are converging to zero at a slower rate than the parentheses

in the second term of βn (p). Thus, higher kF helps reducing the term TU , but only to some

limit (because of the max {. . .} term in TU ); thus for kF > k̆F the TU dominates TY (p) and

the rate of convergence of the estimator F̂m(xt,αi) (ω|xt) is ρUn .30

Remark 12. Note that the results developed in the paper may also be applied to the pure
conditional deconvolution model Yit = αi + Uit (or more generally Yit = m (Xit) + αi + Uit),

where αi and Uit are independent conditional on Xit. In this model the estimators do not

change, although the rate of convergence improves. The rate of convergence is βOSn (d), but

the terms
(
k − 1

)
d/
(
2k + d

)
and rp/

(
2k + p

)
in the denominator of the first fractions (the

"deconvolution" fractions) are absent. Model (1) subjects αi to transformation m (x, ·), which
is responsible for the terms

(
k − 1

)
d/
(
2k + d

)
and rp/

(
2k + p

)
appearing in the rate βOSn (d)

of Theorem 4 as well as the terms h
−(k−1)
w and h−rw appearing in rate βn (d) of Theorem 3.

These terms do not appear in the corresponding rates of convergence in model Yit = αi +Uit.

Now consider the case of (conditionally) super-smooth errors.

30As usual, the larger kF is, the slower is the rate of convergence of hw to zero, because it is easier to control
the regularization bias hKF

w for larger kF .
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Assumption 10. γ > 2 + 2p.

Theorem 5. Suppose Assumptions SS, ID(i-vi), 1-7, 10, and either SYM or ASYM hold.

Then, with the appropriately chosen bandwidths,

sup
(ω,xtτ )∈R×X×X

∣∣∣F̂m(xt,αi) (ω|xtτ )− Fm(xt,αi) (ω|xtτ )
∣∣∣ = Op

(
βSSn

)
and

sup
(ω,xt)∈R×X

∣∣∣F̂m(xt,αi) (ω|xt)− Fm(xt,αi) (ω|xt)
∣∣∣ = Op

(
βSSn

)
,

where βSSn = (ln (n))−kF /λ. The corresponding values of hU , hY (d), and hw are given in the

proof of the theorem.

Remark 13. The rate of convergence is logarithmic and does not depend on the dimension
of the vector of the covariates Xit. This is similar to the nonparametric instrumental variable

estimation in the severely ill-posed case, see, for example, Chen and Reiss (2007).

Remark 14. One may also be interested in the pointwise (in xt) rate of convergence of

F̂m(xt,αi) (s|xt). In this case the definition of χ (s) should be changed to χ (s|x) = max1≤t≤T

sup(s)∈[−s,s] 1/
∣∣φUit (s|x)

∣∣, and the Assumptions OS and SS should be changed accordingly, so
that λ becomes a function of xt. Then the pointwise rates of convergence are the same as the

rates given in Theorems 3, 4, and 5 with λ substituted by λ (xt), as long as the function λ (x)

is suffi ciently smooth in x.

Corollary 6. Suppose there is a set Ωxω =
{

(xt, ω) ∈ X×R : ωa (xt) ≤ ω ≤ ωb (xt)
}
and

positive numbers ε ≤ εX and δ such that fm(αi,xt) (ω|xt) ≥ δ for all (xt, ω) ∈ Ωxω +Bp+1
εω (0),

where Bp+1
εω (0) is a p + 1-dimensional ball around 0p+1 with radius εω. Suppose that the

conditions of either Theorem 3, or 4, or 5 hold. Then

sup
(q,xt)∈

[
Fm(xt,αi)

(ωa(xt)|xt),Fm(xt,αi)(ωb(xt)|xt)
]
×X

∣∣∣Q̂m(xt,αi) (q|xt)−Qm(xt,αi) (q|xt)
∣∣∣ = Op (ψn) ,

where ψn is either βn (p), or βOSn (p), or βSSn (p), respectively.

A similar corollary holds for the estimator Q̂m(xt,αi) (q|xtτ ). The derived rates of conver-

gence can be used to obtain the rates of convergence of estimators m̂RE and m̂FE .

Theorem 7. Suppose Assumption RE holds. Suppose that for some small δ > 0 function

∂m (x, α) /∂α is bounded away from zero and infinity for all α ∈ [δ/2, 1− δ/2] and all x ∈ X .
Suppose that the conditions of either Theorem 3, or 4, or 5 hold. Then

sup
(x,α)∈X×[δ,1−δ]

|m̂RE (x, α)−m (x, α)| = OP
(
βREn

)
,
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where βREn is either βn (p), or βOSn (p), or βSSn , respectively.

Now consider the fixed effects model. Define functions

α (q|x) = min
{(t,τ):t6=τ}

inf
x2∈X

Qαi|Xit,Xiτ (q|x, x2) and

α (q|x) = max
{(t,τ):t6=τ}

sup
x2∈X

Qαi|Xit,Xiτ (q|x, x2) .

Also, define the set Sx,α (ϑ) =
{

(x, α) : x ∈ X , α ∈ [α (ϑ|x) , α (1− ϑ|x)]
}
.

Theorem 8. Suppose Assumption FE holds. Suppose that for some small δ > 0 functions

fαi|Xit (α|xt), fαi|Xit,Xiτ (α|xt, xτ ) and ∂m (xt, α) /∂α are bounded away from zero and infinity

for all α ∈ [α (δ/2|xt) , α (1− δ/2|xt)], (xt, xτ ) ∈ X × X , t, and τ 6= t. Suppose that the

conditions of either Theorem 3, or 4, or 5 hold. Then for all t,

sup
(x,α)∈Sx,α(δ)

|m̂FE (x, α)−m (x, α)| = OP
(
βFEn

)
,

sup
(x,α)∈X×[δ,1−δ]

∣∣∣Q̂αi|Xit (q|xt)−Qαi|Xit (q|xt)
∣∣∣ = OP

(
βFEn

)
,

where βFEn is either βn (2p), or βOSn (2p), or βSSn , respectively.

Suppose the conditions of Theorem 3 hold. Then, the rate of convergence of m̂RE (·) to
m (·) is βn (p), i.e. the rate of convergence of estimator m̂RE (·) to m (·) is "p-dimensional".
This is because estimation of the random effects model only requires estimation of cumula-

tive distribution and quantile functions conditional on the p-vector xt, i.e. it uses between-

variation. In contrast, the estimation of the fixed effects model relies on within-variation and

hence requires estimation of distribution and quantile functions conditional on the (2p)-vector

xtτ . Consequently, Theorem 3 ensures that the rate of convergence of the estimator m̂FE (·)
to m (·) is at least βn (2p). Importantly, estimator m̂FE (·) has the form of averaging over

x2 (see equation (14)). Thus, it is likely that the rate of convergence of estimator m̂FE (·)
to m (·) is faster than βn (2p) under some conditions. One way of showing this improvement

in the rate of convergence would be to follow Newey (1994) in deriving the influence of each

observation. However, the estimation problem in this paper is ill-posed and the analysis would

require a substantial deviation from Newey (1994). This analysis is left for future research.

Finally, the estimator of the policy relevant function ĥ (x, q) has the same rate of conver-

gence as the estimator m̂FE (x, α). Note that estimation of h (x, q) requires estimation of the

unconditional distribution of αi. For instance, estimators F̂αi (α) =
∫
X F̂αi (α|xt) f̂ (xt) dxt or

F̂αi (α) = 1
nT

∑n
i=1

∑T
t=1 F̂αi (α|Xit) can be used. Note that these estimators use the values

of F̂αi (α|xt) for all values xt ∈ X , thus one may need to modify the estimator F̂αi (α|xt) so
that it is consistent on the boundary of set X . For example, one can use boundary kernels,
as was mentioned earlier.
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4 Monte Carlo

This section presents a Monte Carlo study of the finite sample properties of the estimator

ĥ (x, q) for the fixed effects model. The data is generated according to the following model:

Yit = m (Xit, αi) + Uit, i = 1, . . . , n, t = 1, . . . , T = 2,

m (x, α) = 2α+ (2 + α)(2x− 1)3,

Xit ∼ i.i.d. Uniform [0, 1] ,

αi =
ρ√
T

T∑
t=1

√
12 (Xit − 0.5) +

√
1− ρ2ψi, ρ = 0.5,

Uit = (1 +Xit)σ0εit,

where n ∈ {2500, 10000} and the following distributions of ψi are considered:

• Design I: ψi ∼ i.i.d. N (0, 1);

• Design II: ψi ∼ i.i.d.
(
χ2 (4)− 4

)
/
√

8;31

• Design III:

ψi ∼ i.i.d.
{
N (−2.5, 1) /

√
29/4, with probability 1/2,

N (2.5, 1) /
√

29/4 with probability 1/2.

The distribution of ψi is symmetric, skewed, and has two distinct modes in designs I, II,

and III, respectively. Laplace (ordinary smooth) and normal (super-smooth) distributions of

εit are considered. For each design, the constant σ0 is chosen so that V [m (Xit, αi)] = V [Uit],

i.e. so that the signal-to-noise ratio is equal to one. The function m (x, α) is chosen so that

it is almost flat for small values of α, but is pronouncedly cubic when α is large; see also

Figure 1.

Each Monte Carlo experiment is based on 500 repetitions. To avoid boundary effects, all

estimators are calculated on the grid of points x ∈ [0.1, 0.9], but boundary kernels are not

used. Also, the rearranged conditional deconvolution CDF estimators F̃m(xt,αi) (w|xt) and
F̃m(xt,αi) (w|xtτ ) are further adjusted so that their lowest value is made to be zero, while the

highest value is made to be one. More precisely, the estimator of the CDF Fm(xt,αi) (w|xt) is
obtained using the following procedure:

1. On the interval
[
Q̂Yit (0.01|Xit = xt) , Q̂Yit (0.99|Xit = xt)

]
a grid G = {ω1, . . . ω100} of

100 equally spaced points is generated, where Q̂Yit (q|Xit = xt) is the conditional quantile

estimator of Bhattacharya and Gangopadhyay (1990);
31χ2 (r) with r ≤ 3 have nonzero or nondifferentiable density on the boundary of the support, and hence do

not satisfy the assumptions of the previous section.
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2. F̂m(xt,αi) (ωj |xt) is calculated for each j and its rearranged version F̃m(xt,αi) (ωj |xt) is
obtained as discussed in Section 3.1;32

3. The range corrected estimator F̂ corrm(xt,αi)
(ωj |xt) is obtained as

F̂ corrm(xt,αi)
(ωj |xt) =

F̃m(xt,αi) (ωj |xt)− F̃m(xt,αi) (ω1|xt)
F̃m(xt,αi) (ω100|xt)− F̃m(xt,αi) (ω1|xt)

.

The resulting estimator F̂ corrm(xt,αi)
(ω|xt) is used to calculate the estimator Q̂m(xt,αi) (ω|xt)

(by numerical inversion of F̂ corrm(xt,αi)
(ω|xt)) and the estimators m̂FE (x, α) and ĥ (x, q) (as

described in Section 3.1). Note that the second step of this procedure (the rearrangement step)

is shown to improve the estimates of CDFs in finite samples by Chernozhukov, Fernandez-

Val, and Galichon (2007). The third step (range adjusting) seems to be useful in practice,

though it may lack sound theoretical justification. This step is performed because the range

of the estimated CDFs F̂m (ωj |xt) and F̃m (ωj |xt) is often considerably different from [0, 1],

and hence some finite sample adjustment is desirable.

The values hw ∈ {0.2, 0.4, 0.6} are considered for deconvolution bandwidths. Bandwidths
hY (1), hY (2), and hU are all taken to be equal and are denoted by hY (this is clearly a

suboptimal choice, since optimal hY (1) should be taken larger than hY (2) and hU ). The

values hY ∈ {0.2, 0.4, 0.6} are considered.
Tables 1-6 present the results of the Monte Carlo experiment. The presented Root Inte-

grated Mean Squared Error (RIMSE), Root Integrated Squared Bias (RIBIAS2), and Root

Integrated Variance (RIVAR) values are calculated as

RIMSE (q) =

√
1

17

∑16

l=0
R−1

∑R

r=1

(
ĥr (xl, q)− h (xl, q)

)2
,

RIBIAS2 (q) =

√
1

17

∑16

l=0

(
R−1

∑R

r=1
ĥr (xl, q)− h (xl, q)

)2
,

RIV AR (q) =

√√√√ 1

17

∑16

l=0

(
R−1

∑R

r=1
ĥ2r (xl, q)−

(
R−1

∑R

r=1
ĥr (xl, q)

)2)
,

where xl = 0.1 + 0.05l is the l-th point of the gird over x, ĥr (x, q) is the estimate of the

true function h (x, q) obtained in the r-th Monte Carlo replication, R = 500 is the number of

replications, and q ∈ {0.875, 0.75, 0.5, 0.25, 0.125}.
32That is, F̃m (ω1|xt) is taken to be the smallest of the values

{
F̂m (ω1|xt) , . . . , F̂m (ω100|xt)

}
, F̃m (ω2|xt)

is taken to be the second smallest value and so on.
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To give an idea of the properties of the estimation method, the following infeasible esti-

mator is also simulated. First, the values of

ĥINF (x, q) =

∑2
t=1

∑n
i=1 YitK

(
Xit−x
σXith

∗

)
K
(
αi−Qαi (q)
σαih

∗

)
∑2

t=1

∑n
i=1K

(
Xit−x
σXith

∗

)
K
(
αi−Qαi (q)
σαih

∗

) ,

are calculated, where Qαi (q), σXit , and σαi are population quantities. This estimator is a

kernel regression that uses the data on αi, i.e. it estimates model (1) as if αi were observed.33

Moreover, this estimator and the corresponding RIMSE is calculated for a range of different

values of the bandwidth h∗ and then the best of these values of RIMSE is reported in the

tables of results (thus this estimator also uses an infeasible bandwidth, which optimizes its

finite sample behavior). It is of interest to see how the feasible estimator ĥ (x, q) compares to

this infeasible estimator.

Several observations are to be made regarding Table 1. First, it is clear that the value

of deconvolution bandwidth hw = 0.2 is too small. Deconvolution is an ill-posed inverse

problem and hence some regularization is needed. Deconvolution bandwidth hw is too low, it

provides too little regularization and therefore the estimator performs very badly. However,

the deconvolution bandwidths hw ∈ {0.4, 0.6} yield far better results. Note also the model
with normal disturbances Uit is harder to estimate than the model with Laplace disturbances,

but not much harder.

Most importantly, the estimator ĥ (·) performs very well when compared to the infeasible
estimator. For most quantiles q and bandwidths (hY , hw) ∈ {0.4, 0.6}×{0.4, 0.6}, the RIMSE
of the feasible estimator is only twice larger than that of the infeasible estimator, which uses

the ideal bandwidth and the data on the unobservable αi.

These findings also hold for the larger sample size n = 10000 and other designs, see Tables

2-6.34 As an illustration, the results of the Monte Carlo experiment for Design I with n = 2500

and hY = hw = 0.4 are also presented graphically in Figure 1.

The finding that the proposed estimator performs well is not inconsistent with the previous

studies in the statistical literature, many of which suggest poor performance of deconvolution

estimators in finite samples. Most previous studies considered density deconvolution and used

significantly smaller samples than in the experiments above. It is important that the estima-

tor ĥ (x, q) only relies on the estimation of the cumulative distribution functions, which are

smoother and easier to estimate than the corresponding density functions. Also, the presented

Monte Carlo experiments uses larger (although typical for micro-econometric studies) sample

sizes.
33 In fact, for each xl, the values of ĥINF (xl, q) were calculated on a grid of quantiles and then rearranged,

to improve the finite sample performance of the infeasible estimator.
34Since the bandwidths hY = 0.2 and hw = 0.2 appear to be too small, the corresponding results are not

presented in Tables 3-6.

32



5 Conclusion

This paper has considered a nonparametric panel data model with nonseparable individual-

specific effects. Nonparametric identification and estimation require data on only two time

periods. This paper derives the rates of convergence of the proposed estimators and presents

a Monte Carlo study, which suggests that the estimators perform very well in finite samples.

Several extensions of model (1) are presented in Evdokimov (2009). That paper relaxes

the assumption of additivity of the disturbance Uit in (1) by considering a nonparametric

panel transformation model with unobserved heterogeneity. Evdokimov (2009) also relaxes

the assumption of scalar persistent heterogeneity αi by considering time varying αit = W ′itβi,

where βi is a vector of individual specific coeffi cients and Wit are observed time varying

covariates.

Evdokimov (2010) applies the methods of this paper to estimation of the union wage

premium. The union wage premium is found to be a decreasing function of the unobserved

skill, especially for the above median skill levels. Nonparamteric i.i.d. bootstrap is used to

construct confidence intervals for the union wage premium function, although a formal proof

of consistency of the bootstrap procedure is left for future work.

6 Appendix

To simplify the notation below, subscript m stands for m (xt, αi). Thus, Fm (ω|xtτ ) means
Fm(αi,xt)|Xit,Xiτ (ω|xt, xτ ).

6.1 Proof of Lemma 1

Note that due to (i),

φ(Y1,Y2) (s1, s2) = E [exp (i (s1 + s2)A+ is1U1 + is2U2)]

= φA (s1 + s2)φU1 (s1)φU2 (s2) ,

∂φ(Y1,Y2) (s1, s2)

∂s1
= φ′A (s1 + s2)φU1 (s1)φU2 (s2)

+φA (s1 + s2)φ
′
U1 (s1)φU2 (s2) ,

where the the existence of the derivatives of characteristic function here and below is guar-
anteed by (ii) and the dominated convergence theorem. Then, using (iv) for all s ∈ R we
obtain

∂φ(Y1,Y2) (s,−s) /∂s1
φ(Y1,Y2) (s,−s) =

φ′A (0)

φA (0)
+
φ′U1 (s)

φU1 (s)
,
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where φA (0) = 1 and φ′A (0) = iE [A] = iE [Y1] due to (iii). Therefore, for any s ∈ R,

φU1 (s) = exp

(∫ s

0

∂φ(Y1,Y2) (ξ,−ξ) /∂s1
φ(Y1,Y2) (ξ,−ξ) dξ − isE [Y1]

)

= exp

(∫ s

0

iE [Y1 exp (iξ (Y1 − Y2))]
φY1−Y2 (ξ)

dξ − isE [Y1]

)
. (A.1)

Using (iv),

φA (s) =
φ(Y1,Y2) (s, 0)

φU1 (s)
=
φY1 (s)

φU1 (s)
, φU2 (s) =

φ(Y1,Y2) (−s, s)
φU1 (−s) =

φY2−Y1 (s)

φU1 (−s) . �

6.2 Identification with Serially Correlated Disturbances

Now suppose that the disturbance Uit in model (1) follows an autoregressive process of order
one (AR(1)), i.e. Uit = ρUit−1 + εit for some constant ρ, |ρ| < 1. Then, the model can be
identified using a panel with three or more time periods. Consider the following modifications
of Assumption ID(i)-(vi):

Assumption AR. Suppose Uit = ρUit−1 + εit for all t ≥ 2 and |ρ| < 1. Also, suppose that:

(i) {Xi, Ui, αi}ni=1 is a random sample and T = 3;

(iia) fεit|Xit,αi,Xi(−t),εi(−t),Ui1
(
εt|xt, α, x(−t), ε−t, u1

)
= fε|Xit (εt|xt) and for all t ∈ {2, 3} and(

εt, xt, α, x(−t), ε(−t)
)
∈ R×X×R×X 2×R;35

(iib) fUi1|Xi1,αi,Xi(−1),εi
(
u1|x1, α, x(−1), ε

)
= fUi1|Xi1 (u1|x1) for all

(
u1, x1, α, x(−1), ε

)
∈ R×

X×R×X 2 × R2;

(iii) E [Ui1|Xi = (x1, x2, x3)] = 0 and E [εit|Xi = (x1, x2, x3)] = 0 for all (x1, x2, x3) ∈ X 3
and t ≥ 2, where Xi = (Xi1, Xi2, Xi3);

(iv) the conditional characteristic functions φUi1 (s|Xi1 = x), φεit (s|Xit = x) do not vanish
for all s ∈ R, x ∈ X , and t ∈ {2, 3};

(v) E [|m (xt, αi)|+ |Ui1|+ |εi2|+ |εi3| |Xi = (x1, x2, x3)] is uniformly bounded for all t and
(x1, x2, x3) ∈ X 3;

(vi) for each x ∈ X there is a x1 (x) ∈ X such that fXi1,Xi2,Xi3 (x1 (x) , x, x) > 0; also,
fXi1,Xi2 (x, x) > 0 for all x ∈ X .

Assumptions AR(iia)-(iib) are similar to Assumption ID(ii) and imply that αi, εit, εis, Ui1
are mutually independent for all t, s ≥ 2, t 6= s. However, there is an important issue regarding
Assumption AR(iib) on Ui1. For illustration, suppose that εit = σt (Xit) ξit for all t, where
ξit ∼ i.i.d. (0, 1) are independent of αi and {Xij}∞j=−∞. Assuming that the data have infinite
history, Ui1 =

∑∞
j=0 ρ

jσ1−j (Xi,1−j) εi,1−j . Then, it is hard to guarantee αi⊥Ui1, conditional
35Here index (−t) stands for "other than t" time periods. Note that x(−t) belongs to X 2, while ε(−t) is a

scalar when T = 3 and t ≥ 2 because there is no εi1 in the model.
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on Xi = (Xi1, Xi2, Xi3). The reason is that αi may be correlated with the past covariates
{Xit}t<=0, which affect the variance of past shocks {εit}t<=0 and hence the distribution of
Ui1. This is the initial condition problem. There are at least two ways to ensure that the
conditional independence condition αi⊥Ui1|Xi holds in this model. First, one can assume that
σt (Xit) = σt, i.e. that the innovations εit are independent of the covariates Xit. Alternatively,
in some cases there is no past history of εit, and Ui1 is a true initialization condition. For
instance, this assumption may hold when a firm is present in the data since the date it was
established.

Note that Assumption AR(vi) is a very weak extension of assumption ID(vi). Also, note
that Assumption AR does not require εit to have the same conditional distribution for different
t ∈ {2, 3}.

Theorem 9. Suppose Assumptions AR, ID(vii)-(viii), and either RE or FE are satisfied.
Then model (1) is identified.

Proof. 1. Take any x ∈ X and note that E [(Yi3 − Yi2)Yi1|Xi = (x1 (x) , x, x)] = 0 iff ρ = 0.
When ρ = 0 identification of φUi1 (s|Xi1 = x) and φεit (s|Xit = x) follows immediately from
the first step of Theorem 1. When ρ 6= 0 using Assumption AR(ii-iii) one obtains

ρ = E [(Yi3 − Yi2)Yi1|Xi = (x1 (x) , x, x)]/E [(Yi2 − Yi1)Yi1|Xi1 = Xi2 = x1 (x)] .

Then for any x ∈ X

φYi1,Yi2 (s1, s2|Xi1 = Xi2 = x)

= E [ exp {i [(s1 + s2)m (x, αi) + (s1 + ρs2)Ui1 + s2εi2]}|Xi1 = Xi2 = x]

= φm(x,αi) (s1 + s2|Xi1 = Xi2 = x)φUi1 (s1 + ρs2|Xi1 = x)φεi2 (s2|Xi2 = x) . (A.2)

Denote µ (x) = E [m (x, αi) |Xi1 = Xi2 = x] = E [Yi1|Xi1 = Xi2 = x]. Then, similar to the
proof of Lemma 1, for all s ∈ R

∂φY1,Y2 (s,−s) /∂s1
φY1,Y2 (s,−s) = iµ (x) +

∂φUi1 ((1− ρ) s|Xi1 = x) /∂s

φUi1 ((1− ρ) s|Xi1 = x)
.

Thus, one obtains

φUi1 (s|Xi1 = x) = exp

∫ s

0

∂φ(Y1,Y2)

(
(1− ρ)−1 ξ,− (1− ρ)−1 ξ

)
/∂s1

φ(Y1,Y2)

(
(1− ρ)−1 ξ,− (1− ρ)−1 ξ

) dξ − isµ (x)

 , (A.3)

and using (A.2)

φεi2 (s|Xi2 = x) =
φYi1,Yi2 (−s, s|Xi1 = Xi2 = x)

φUi1 (s (ρ− 1) |Xi1 = x)
.

2. Now consider identification under Assumption FE. Note that for any x ∈ X

φYi1(s|Xi1 = x,Xi2 = x) = φm(x,αi)(s|Xi1 = x,Xi2 = x)φUi1(s|Xi1 = x) ,

φYi2(s|Xi1 = x,Xi2 = x) = φm(x,αi)(s|Xi1 = x,Xi2 = x)φUi1(ρs|Xi1 = x)φεi2(s|Xi2 = x) ,

thus φm(x,αi) (s|Xi1 = x,Xi2 = x) and φm(x,αi) (s|Xi1 = x,Xi2 = x) are identified. The rest

35



of the proof follows step 3 of the proof of Theorem 2. The proof of identification under
Assumption RE is similar. �

Now suppose that the disturbance term follows moving average process of order one
(MA(1)). To demonstrate the flexibility of the framework, the MA(1) model is identified
under somewhat different assumptions than the AR(1) model above. Assume that the dis-
turbance term follows Uit = εit + θ (Xit) εit−1, i.e. the moving average parameter depends on
the value of the covariate in the corresponding time period.

Assumption MA. Suppose Uit = εit + θ (Xit) εit−1, for all t ≥ 1, and supx∈X |θ (x)| < 1.
Suppose also that:

(i) {Xi, Ui, αi}ni=1 is a random sample and T = 3;

(iia) fεit|Xit,αi,Xi(−t),εi(−t)
(
εt|xt, α, x(−t), ε(−t), u1

)
= fε|Xit (εt|xt) and for all (εt, xt, α, x(−t),

ε(−t)) ∈ R×X×R×X 2×R and t ≥ 1;36

(iib) fεi0|Xi1,αi,Xi(−1),εi
(
ε0|x1, α, x(−1), ε

)
= fεi0|Xi1 (ε0|x1) for all

(
ε0, x1, α, x(−1), ε

)
∈ R ×

X×R×X 2 × R3;

(iii) E [εit|Xi = (x1, x2, x3)] = 0 for all (x1, x2, x3) ∈ X 3 and t ≥ 0;

(iv) the conditional characteristic functions φεit (s|Xit = x) and φεi0 (s|Xi1 = x) do not van-
ish for all s ∈ R, x ∈ X , and t ≥ 1;

(v) E[|m (xt, αi)|+
∑3

j=0 |εij | |Xi = (x1, x2, x3)] is uniformly bounded for all t and (x1, x2, x3) ∈
X 3;

(vi) fXi1,Xi2,Xi3 (x, x, x) > 0 for each x ∈ X .

Assumptions MA(i-v) are similar to Assumptions AR(i-v). Note the "initial condition"
type Assumption MA(iib). In contrast to Assumption AR(vi), Assumption MA(vi) requires
that the trivariate density fXi1,Xi2,Xi3 (x, x, x) is non-zero. This is the price paid for allowing
the moving average parameter θ to depend on Xit.

Theorem 10. Suppose Assumptions MA, ID(vii)-(viii), and either RE or FE are satisfied.
Then model (1) is identified.

Proof. 1. Fix any x ∈ X and define the event Gx = {Xi = (x, x, x)} and the function
σ2t (x) = E

[
ε2it|Xit = x

]
for t ≥ 1. Also define

A1 (x) = E [(Yi2 − Yi3)Yi1|Gx] = θ (x)σ21 (x)

A2 (x) = E [(Yi2 − Yi1)Yi3|Gx] = θ (x)σ22 (x)

A3 (x) = E [(Yi2 − Yi3)Yi2|Gx] = θ2 (x)σ21 (x) + (1− θ (x))σ22 (x) ,

Note that θ (x) = 0 iff A1 (x). When θ (x) identification follows the first step of Theorem 1.
When θ (x) 6= 0 one can write A1 (x) +A3 (x) = θ2 (x)σ21 (x) + σ22 (x) and obtain an equation
for θ (x):

A1 (x) +A3 (x) = θ (x)A1 (x) +A2 (x) /θ (x) ,

36Here ε(−t) ∈ R3 when T = 3. For instance, ε(−2) = (ε0, ε1, ε3).
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which has unique solution given that |θ (x)| < 1. Thus θ (x) is identified.
Note that

φY1,Y2,Y3 (s1, s2, s3|Gx) = φm(x,αi) (s1 + s2 + s3|Gx)φεi0 (s1θ (x) |Xi1 = x)×
φεi1 (s2θ (x) + s1|Xi1 = x)φεi2 (s3θ (x) + s2|Xi2 = x)φεi3 (s3|Xi3 = x) . (A.4)

Note that ∂φεi3 (0|Xi3 = x) /∂s3 = 0 due to Assumption AR(iii). Then, for all s

∂φY1,Y2,Y3 (−s, s, 0) /∂s3

φY1,Y2,Y3 (−s, s, 0)
= iE [m (x, αi) |Gx] + θ (x)

∂φεi2 (s|Xi2 = x) /∂s

φεi2 (s|Xi2 = x)
.

Thus, φεi2 (s|Xi2 = x) is identified and an expression similar to (A.3) can be given for
φεi2 (s|Xi2 = x). Similarly, φεi1 (s|Xi1 = x) is identified by the equation

∂φY1,Y2,Y3 (0, s,−s) /∂s1
φY1,Y2,Y3 (0, s,−s) = iE [m (x, αi) |Gx] +

∂φεi1 (sθ (x) |Xi1 = x) /∂s

φεi1 (sθ (x) |Xi1 = x)
.

Then, functions φεi3 (s|Xi3 = x) and φεi0 (s|Xi1 = x) are identified, respectively, by equations

∂φY1,Y2,Y3 (−s, 0, s) /∂s3
φY1,Y2,Y3 (−s, 0, s) = iE [m (x, αi) |Gx] + θ (x)

∂φεi2 (θ (x) s|Xi2 = x) /∂s

φεi2 (θ (x) s|Xi2 = x)

+
∂φεi3 (s|Xi3 = x) /∂s

φεi3 (s|Xi3 = x)
, and

∂φY1,Y2,Y3 (s, 0,−s) /∂s1
φY1,Y2,Y3 (s, 0,−s) = iE [m (x, αi) |Gx] + θ (x)

∂φεi0 (θ (x) s|Xi1 = x) /∂s

φεi0 (s|Xi1 = x)

+
∂φεi1 (s|Xi1 = x) /∂s

φεi1 (s|Xi1 = x)
.

The rest of the proof is similar to the second step of the proof of Theorem 9
2. Suppose Assumption FE holds. For any x ∈ X

φYi1(s|Xi1 = x,Xi2 = x) = φm(x,αi)(s|Xi1 = x,Xi2 = x)φεi1(s|Xi1 = x)φεi0(θ(x)s|Xi1 = x) ,

φYi2(s|Xi1 = x,Xi2 = x) = φm(x,αi)(s|Xi1 = x,Xi2 = x)φεi2(s|Xi2 = x)φεi1(θ(x)s|Xi1 = x) ,

and hence functions φm(x,αi) (·) and φm(x,αi) (·) are identified and the rest of the proof follows
step 3 of the proof of Theorem 2. The proof of identification under Assumption RE is similar.
�

It is straightforward to extend the approach to larger ARMA(p,q) models.

6.3 Proof of Identification When Xit Has Continuous Components

Define the events GXit,n (x) = {Xit ∈ (x− 1p/n, x+ 1p/n)} and Gn (x) = GXi1,n (x)∩GXi2,n (x),
where 1p is the identity vector of length p = dim (X ). Fix any x0 ∈ X and s ∈ R. For any
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n > 0 we have

∂φYi1,Yi2 (s,−s|Gn (x0)) /∂s

φYi1,Yi2 (s,−s|Gn (x0))
=

E [im (Xi1, αi) exp {is (m (Xi1, αi)−m (Xi2, αi))} |Gn (x0)]

E [exp {is (m (Xi1, αi)−m (Xi2, αi))} |Gn (x0)]

+
∂φUi1 (s|GXi1,n (x0)) /∂s

φUi1 (s|GXi1,n (x0))
.

First, for any δ > 0 there exists a large enough n1 (δ) such that
sup(x1,x2)∈(x0−1p/n,x0+1p/n)2 supα∈[−δ−1/2,δ−1/2] |m (x1, α)−m (x2, α)| ≤ δ holds for all n ≥
n1 (δ). Then, for any n ≥ n1 (δ):

|E [im (Xi1, αi) exp {is (m (Xi1, αi)−m (Xi2, αi))} |Gn (x0)]− E [im (Xi1, αi) |Gn (x0)]|

=

∣∣∣∣∣
∫
(x1,x2)∈(x0−1p/n,x0+1p/n)2

∫
α∈R

m (x1, α) (exp {is (m (x1, α)−m (x2, α))} − 1)

×fαi (α|x1, x2) dαdFXi1,Xi2 (x1, x2|Gn (x0))

∣∣∣∣
≤ 2

∫
(x1,x2)∈(x0−1p/n,x0+1p/n)2

∫
|α|>δ−1/2

|m (x1, α)| fαi (α|x1, x2) dαdFXi1,Xi2 (x1, x2|Gn (x0))

+

∣∣∣∣∣
∫
(x1,x2)∈(x0−1p/n,x0+1p/n)2

∫
|α|≤δ−1/2

m (x1, α)

∫ s

0
i (m (x1, α)−m (x2, α)) exp {iξ (m (x1, α)−m (x2, α))} dξ

×fαi|Xi1,Xi2 (α|x1, x2) dαdFXi1,Xi2 (x1, x2|Gn (x0))

∣∣∣∣
≤ 2E

[
|m (Xi1, αi)| 1

{
|αi| > δ−1/2

}∣∣∣Gn (x0)
]

+δ |s|E
[[
m (Xi1, αi) 1

{
|αi| ≤ δ−1/2

}∣∣∣Gn (x0)
]]

→ 0 as δ → 0.

Second, for any δ > 0 there exists a large enough n2 (δ) such that

sup
(x1,x2,α)∈(x0−1p/n,x0+1p/n)2×[−δ−1/2,δ−1/2]

|m (x1, α) fαi (α|x1, x2)−m (x0, α) fαi (α|x0, x0)| ≤ δ

holds for all n ≥ n2 (δ). Then, for all n ≥ n2 (δ):

38



|E [m (Xi1, αi) |Gn (x0)]− E [m (Xi1, αi) |Xi1 = Xi2 = x0]|

=

∣∣∣∣∣
∫
α∈R

∫
(x1,x2)∈(x0−1p/n,x0+1p/n)2

m (x1, α) fαi (α|x1, x2) dFXi1,Xi2 (x1, x2|GXit,n (x0)) dα

−
∫
α∈R

m (x0, α) fαi (α|x0, x0) dα
∣∣∣∣

≤ 2δ1/2 + E
[
|m (Xi1, αi)| 1

{
|αi| > δ−1/2

}∣∣∣Gn (x0)
]

+E
[
|m (Xi1, αi)| 1

{
|αi| > δ−1/2

}∣∣∣Xi1 = Xi2 = x0

]
→ 0 as δ → 0,

where the inequality follows from splitting the integration over the regions of |α| ≷ δ−1/2 as
before and the triangle inequality. Taking n3 (δ) = max {n1 (δ) , n2 (δ)} we get that for all
n ≥ n3 (δ)

|E [ im (Xi1, αi) exp {is (m (Xi1, αi)−m (Xi2, αi))}| Gn (x0)]

−E [m (Xi1, αi) |Xi1 = Xi2 = x0]|
→ 0 as δ → 0.

Similarly, one can show that

E [ exp {is (m (Xi1, αi)−m (Xi2, αi))}| Gn (x0)] → 1,

φUi1 (s|GXi1,n (x0)) → φUi1 (s|Xi1 = x0) ,

∂φUi1 (s|GXi1,n (x0)) /∂s = E [ iUi1 exp {isUi1}| Gn (x0)] → ∂φUi1 (s|Xi1 = x0) /∂s,

as n→∞.
Thus, as n→∞:

∂φYi1,Yi2 (s,−s|Gn (x0)) /∂s

φYi1,Yi2 (s,−s|Gn (x0))
→ E [ism (Xi1, αi) |Xi1 = Xi2 = x0] +

∂φUi1 (s|Xi1 = x0) /∂s

φUi1 (s|Xi1 = x0)
,

where E [ism (Xi1, αi) |Xi1 = Xi2 = x0] = isE [isY1|Xi1 = Xi2 = x0] is identified. Hence
φUi1 (s|Xi1 = x0) is identified. Then, one identifies φm(x1,αi) (s|Xi1 = x1, Xi2 = x2) and
φUi2 (s|Xi2 = x0) similarly. �

6.4 Identification with Misclassification

This section explains how the identification results of Theorems 1 and 2 can be extended to
the analysis of data with misclassification when the probability of misclassification is either
known or can be estimated from a separate dataset. To simplify the presentation of the main
idea assume that the covariate is a scalar binary variable X∗it ∈ {0, 1}. Suppose that the true
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value of covariate X∗it is not observed and instead one observes

Xit =

{
X∗it, with probability p,

1−X∗it, with probability 1− p. (A.5)

Thus, Xit is a measurement of X∗it that is subject to misclassification. Suppose also, that the
events of misclassification are independent over time. An empirical example of such settings
is given in the union membership study of Card (1996), where X∗it is the union membership
that is likely to be misreported. Card (1996) uses Current Population Survey data with a
validation dataset and finds that the misclassification model (A.5) describes the data well.
The validation dataset is also used to estimate the probability of misclassification p.

When the value of p is known (eg. from a validation study) we can write the joint
characteristic function of (Yi1, Yi2) conditional on the observables Xit as

φYi1,Yi2|Xi1,Xi2 (s1, s2|0, 0) = p2φYi1,Yi2|X∗i1,X∗i2 (s1, s2|0, 0)

+ p (1− p)φYi1,Yi2|X∗i1,X∗i2 (s1, s2|0, 1)

+ p (1− p)φYi1,Yi2|X∗i1,X∗i2 (s1, s2|1, 0)

+ (1− p)2 φYi1,Yi2|X∗i1,X∗i2 (s1, s2|1, 1) ,

where φYi1,Yi2|X∗i1,X∗i2 (·) is the joint characteristic function of (Yi1, Yi2) conditional on the
unobservables X∗it. One can write similar representations of φYi1,Yi2|Xi1,Xi2 (s1, s2|x1, x2) for
(x∗1, x

∗
2) ∈ {(0, 1) , (1, 0) , (1, 1)}.

Then, for any (s1, s2) one obtains a system of four linear equations with four unknowns
φYi1,Yi2|X∗i1,X∗i2 (s1, s2|x∗1, x∗2). This system of equations has a unique solution if the misclassi-
fication probability p is not equal to 1/2. Thus, one can identify φYi1,Yi2|X∗i1,X∗i2 (s1, s2|x∗1, x∗2)
and then follow the proofs of Theorems 1 and 2 to identify m (x∗, α) and other objects of
interest.

6.5 Proofs of the Results on Estimation

Proof of Lemma 2. For simplicity of notation the proof is given for X ⊂ R. Generalization
to a multivariate x is immediate. Note that∣∣∣∣∣∂k

[
∂φUit (s|xt) /∂s

]
∂xkt

∣∣∣∣∣ =

∣∣∣∣ ∂k∂xkt
∫ ∞
−∞

iueisufUit (u|xt) du
∣∣∣∣

=

∣∣∣∣∫ ∞
−∞

iueisu
∂kfUit (u|xt) /∂xkt

fUit (u|xt)
fUit (u|xt) du

∣∣∣∣
≤

(∫ ∞
−∞

u2fUit (u|xt) du ·
∫ ∞
−∞

(
∂kfUit (u|xt) /∂xkt

)2
fUit (u|xt)

du

)1/2
≤ C,

where the second equality follows by the support assumption and continuity of ∂kfUit(u|xt)/∂xkt ,
and the first inequality follows from Cauchy-Schwarz inequality. Thus, the k-th derivative of
the function ∂φUit (s|xt) /∂s is uniformly bounded for all s, hence ∂φUit (s|xt) /∂s ∈ DRX (k) is
proved. The condition φUit (s|xt) ∈ DRX (k) can be shown to hold in exactly the same way. �
Proof of Lemma 3. Again, for simplicity of notation the proof is given for X ⊂ R. Similar
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to the proof of Lemma 2:∣∣∣∣∣∣
∂k
[
∂φm(xt,αi) (s|xt) /∂s

]
∂xkt

∣∣∣∣∣∣ =

∣∣∣∣∣ ∂k∂xkt
∫ ψh(xt)

ψl(xt)
iω (xt, α) fαi (α|xt) dα

∣∣∣∣∣
=

∣∣∣∣∣∣
k∑
q=0

(
k

q

)∫ ψh(xt)

ψl(xt)

∂qω (xt, α)

∂xqt

∂k−qfαi (α|xt) /∂xk−qt

fαi (α|xt)
fαi (α|xt) du

∣∣∣∣∣∣

≤
k∑
q=0

(
k

q

)∫ ψh(xt)

ψl(xt)

∣∣∣∣∂qω (xt, α)

∂xqt

∣∣∣∣2 fαi (α|xt) dα ·
∫ ψh(xt)

ψl(xt)

(
∂k−qfαi (α|xt) /∂xk−qt

)2
fαi (α|xt)

dα


1/2

≤ C
(

1 + sk
)
,

where the second equality follows by the support assumption and continuity of ∂kω (xt, α) /∂xkt
and ∂kfαi (α|xt) /∂xkt , and the first inequality follows from Cauchy-Schwarz inequality. Hence,
∂φm(xt,αi) (s|xt) /∂s ∈ DRX (k) is proved. The other conditions of Assumption 5 can be shown
to hold in a similar way. �

Lemmas 4-6 are used in the proofs of Theorem 3:

Lemma 4. Suppose Assumptions SYM, ID(i)-(vi), and 1-7 hold. Assume that nhU → ∞,
hU → 0, [log (n)]1/2 n1/γ−1/2h−pU → 0, Mn → ∞, and Mnh

p
U (log (n))γ−3/2 n1/γ−1/2 → 0.

Then,

sup
(s,x)∈[−Mn,Mn]×X

∣∣∣s−1 (φ̂SU (s|x)− φU (s|x)
)∣∣∣

= Op

(
χ (Mn)

[[
log (n)

/(
nh2pU

)]1/2
+
(

1 +Mk−1
n

)
hkU

])
.

Proof. 1. Let us first introduce some notation and then explain the logic of the proof.
Consider any t and τ , t < τ . Define the event Gtτx = {Xit = Xiτ = x}. Define κt,τi (x, h) =

K ((Xit − x) /h)K ((Xiτ − x) /h) and Ri,tτ (x) = h−2pU κtτi (x, hU ). Define Zi,tτ = Yit−Yiτ and

∆n,tτ (s, x) = n−1
n∑
i=1

s−1
(
eisZi,tτ − E

[
eisZi,tτ |Gtτx

])
Ri,tτ (x) .

By continuity, one can take ∆n,tτ (0, x) = n−1
∑n

i=1 i
[(
Zi,tτ − E

[
Zi,tτ |Gtτx

])
Ri,tτ (x)

]
, al-

though the value of ∆n,tτ (s, x) at s = 0 is not important, because we are ultimately interested
in approximating an integral over s of this function. In parts 1-3 of this proof t and τ are
fixed, and to simplify the notation ∆n,tτ (s, x), Zi,tτ , and Ri,tτ (x) will be written as ∆n (s, x),
Zi and Ri (x), respectively.

We are going to obtain the rate of convergence of sup(s,x)∈[−Mn,Mn]×X |∆n (s, x)| in prob-
ability, where the set [−Mn,Mn] expands with n. The interest in ∆n (s, x) comes from the
representation (A.20) below. Bernstein’s inequality is used to obtain the rate of convergence
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of the supremum. Although the use of Bernstein’s inequalities to obtain supremum rates of
convergence of kernel estimators is standard (see for example Newey, 1994), the proof below
is different from the usual ones in several aspects. As mentioned in the main text, the proof

is complicated by the fact that the quantity of interest (s−1[φ̂
S

U (s|x)− φU (s|x)] or ∆n (s, x))
exhibits different behavior for small, intermediate, and large values of |s|. Yet our interest is
in obtaining a uniform rate over the values of |s|.

The values of s in the neighborhood of zero cause problems because of the s−1 term. This
is the reason we consider sums of s−1

(
eisZi − E

[
eisZi |Gtτx

])
Ri (x) rather than of the more

usual s−1eisZiRi (x). The variance of the former expression is shown to be bounded for all
s 6= 0, while the variance of the latter is not bounded when s approaches zero.

When |s| is large the problems are of a different sort. As mentioned in the main text, the
bias of kernel estimators of such quantities as E [exp {isYit} |Xit = x] and E

[
exp {isZi} |Gtτx

]
is growing with |s|.

Part 2 of the proof bounds |∆n (s, x)− E [∆n (s, x)]| in probability. Part 3 provides the
bound for the bias term |E [∆n (s, x)]|. Part 4 combines these results to derive the result of
the lemma.

2a. Consider the "stochastic" part, i.e. ∆n(s,x)−E[∆n(s,x)]. Define ρn=(log(n)/(nh2pU ))1/2

and η (z, s, x) = s−1
(
eisz − E

[
eisZi |Gtτx

])
for all s 6= 0 and by continuity take η (z, 0, x) =

lims→0 η (z, s, x) = i
(
z − E

[
Zi|Gtτx

])
. Note that

η (z, s, x) = i

∫ s

0
(ζ/s)

(
zeiζz − E

[
Zie

iζZi |Gtτx
])
dζ (A.6)

and that ∆n (s, x) = n−1
∑n

i=1 η
(
Zin, s, x

)
Ri (x) .

Define the random variable Zin = Zi1
{
|Zi| ≤ log (n)n1/γ

}
and function

∆n (s, x) = n−1
n∑
i=1

η
(
Zin, s, x

)
Ri (x) .

By the triangle inequality for all s and x

|∆n (s, x)− E [∆n (s, x)]| ≤
∣∣∆n (s, x)−∆n (s, x)

∣∣
+
∣∣∆n (s, x)− E

[
∆n (s, x)

]∣∣+
∣∣E [∆n (s, x)

]
− E [∆n (s, x)]

∣∣ . (A.7)

Part 2b of the proof shows that sup(s,x)∈[−Mn,Mn]×X |∆n (s, x) − E[∆n (s, x)]| = Op (ρn)

using Bernstein’s inequality. Parts 2c and 2d show that sup(s,x)∈[−Mn,Mn]×X |E[∆n (s, x)] −
E[∆n (s, x)]| = O (ρn) and sup(s,x)∈[−Mn,Mn]×X

∣∣∆n (s, x)−∆n (s, x)
∣∣ = Op (ρn), respectively.

Combined, these results prove that sup(s,x)∈[−Mn,Mn]×X |∆n (s, x)− E [∆n (s, x)]| = Op (ρn).

2b. Note that for s ∈ [−1, 1] we have |η (z, s, x)| ≤ |z|+E
[
|Zi| |Gtτx

]
,where E

[
|Zi| |Gtτx

]
is

bounded by Assumption 3. For s ∈ (−∞,−1] ∪ [1,∞) we have |η (·)| ≤ 2 from the definition.
Denote Cη = max

{
2, supx∈X E

[
|Zi| |Gtτx

]}
and notice that

E
[∣∣η (Zin, s, x)Ri (x)

∣∣2] ≤ E [(∣∣Zin∣∣+ Cη
)2
R2i (x)

]
≤ E

[
E
[

( |Zi|+ Cη|)2
∣∣∣Xit, Xiτ

]
R2i (x)

]
≤ CE

[
R2i (x)

]
≤ Ch−2pU , (A.8)
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where the first inequality follows from the bounds given under equation (A.6), the third
inequality follows from Assumption 3 and the last inequality follows from Assumption 6.

It follows from (A.6) that∣∣∆n (s1, x)−∆n (s2, x)
∣∣ ≤ (log (n)n1/γ + Cη

)
h−2pU |s1 − s2| . (A.9)

Since sup(s,x)∈[−ς,ς]×X
∣∣η (Zin, s, x)∣∣ = ς

(
log (n)n1/γ + C

)
and sup(s,x)∈(−∞,−ς]∪[ς,∞)×X∣∣η (Zin, s, x)∣∣ = 2ς−1, one obtains

sup
(s,x)∈R×X

∣∣η (Zin, s, x)∣∣ ≤ C (log (n)n1/γ + 1
)
. (A.10)

Next, for s ∈ [−ς, ς] from (A.6)

η (z, s, x1)− η (z, s, x2) = i

∫ s

0
(ζ/s)

(
E
[
Zie

iζZi |Gtτx1
]
− E

[
Zie

iζZi |Gtτx2
])
dζ.

Note that

iE
[
Zie

isZi |Gtτx
]

= iE
[
(Uit − Uiτ ) eis(Uit−Uiτ )|Gtτx

]
=

∂φUit (s|x)

∂s
φUiτ (−s|x)− φUit (s|x)

∂φUiτ (−s|x)

∂s
.

Then, due to Assumption 4 function E
[
Zie

isZi |Gtτx
]
belongs to D[−ς,ς]X

(
k
)
and therefore

supz,s∈R×[−ς,ς] |η (z, s, x1)− η (z, s, x2)| ≤ ςC ‖x1 − x2‖k. When s ∈ (−∞,−ς] ∪ [ς,∞) one
obtains

|η (z, s, x1)− η (z, s, x2)| = |s|−1
∣∣φUit (s|x1)φUiτ (−s|x1)− φUit (s|x2)φUiτ (−s|x2)

∣∣
≤ C ‖x1 − x2‖k ,

where the inequality follows from Assumption 4, boundedness of characteristic functions and
the fact that |s|−1 ≤ ς−1. Thus, there is a constant C > 0 such that for all (x1, x2) ∈ X × X

sup
z,s∈R×R

|η (z, s, x1)− η (z, s, x2)| ≤ C ‖x1 − x2‖k . (A.11)

Now for all s:∣∣∆n (s, x1)−∆n (s, x2)
∣∣

≤ n−1
n∑
i=1

[∣∣η (Zin, s, x1)− η (Zin, s, x2)∣∣ |Ri (x1)|+
∣∣η (Zin, s, x2)∣∣ |Ri (x1)−Ri (x2)|

]
≤ C

(
h−2pU ‖x1 − x2‖k + log (n)n1/γh−2p−1U ‖x1 − x2‖

)
, (A.12)

where the first inequality follows from "add and subtract" and the triangle inequality and the
second inequality follows from (A.10), (A.11), and that for each n function Ri (x) is bounded
and Lipschitz by Assumption 6.
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Take a sequence Nn = nCN for some CN > 0. Consider the grid {sr}Nnr=−Nn+1 with
sr = ((r − 1/2) /Nn)Mn. Since X ⊂Rp is bounded, there is a positive constant CX and a
sequence of grids of Ln = nCL points {xq}Lnq=1 ⊂ X , such that supx∈X minq∈{1,...,Ln} ‖x− xq‖ <
CXL

−1/p
n . For any s ∈ [−Mn,Mn] define r∗ (s) to be any element of {−Nn + 1, . . . , Nn} such

that
∣∣sr∗(s) − s∣∣ ≤Mn/Nn. Define q∗ (x) similarly. Then for large n,

sup
(s,x)∈[−Mn,Mn]×X

∣∣∆n (s, x)− E
[
∆n (s, x)

]∣∣
≤ sup

(s,x)∈[−Mn,Mn]×X

∣∣∆n (s, x)− E
[
∆n (s, x)

]
−
(
∆n

(
sr∗(s), x

)
− E

[
∆n

(
sr∗(s), x

)])∣∣
+ sup
(s,x)∈[−Mn,Mn]×X

∣∣∆n

(
sr∗(s), x

)
− E

[
∆n

(
sr∗(s), x

)]
−
(
∆n

(
sr∗(s), xq∗(x)

)
− E

[
∆n

(
sr∗(s), xq∗(x)

)])∣∣
+ max
−Nn+1≤r≤Nn,1≤q≤Ln

∣∣∆n (sr, xq)− E
[
∆n (sr, xq)

]∣∣
≤ C log (n)n1/γh−2pU Mn/n

CN + C log (n)n1/γh−2p−1U CX /n
CL/p

+ max
−Nn+1≤r≤Nn,1≤q≤Ln

∣∣∆n (sr, xq)− E
[
∆n (sr, xq)

]∣∣ , (A.13)

where the first inequality follows by the triangle inequality, and the second inequality follows
from equations (A.9) and (A.12) and that |E [Z1]− E [Z2]| ≤ E [|Z1 − Z2|] for any random
variables Z1 and Z2.

Take the constants CN and CL suffi ciently large so that the first two terms in the last line
of (A.13) converge to zero at a rate, faster than ρn. Then, for large enough a > 0

Pr

{
sup

(s,x)∈[−Mn,Mn]×X

∣∣∆n (s, x)− E
[
∆n (s, x)

]∣∣ > (√2 + 1
)
aρn

}

≤ Pr

{
max

−Nn+1≤r≤Nn,1≤q≤Ln

∣∣∆n (sr, xq)− E
[
∆n (sr, xq)

]∣∣ > √2aρn

}

= Pr

 max
−Nn+1≤r≤Nn,

1≤q≤Ln

∣∣∣∣∣ 1n
n∑
i=1

(
η
(
Zin, sr, xq

)
Ri (x)− E

[
η
(
Zin, sr, xq

)
Ri (x)

])∣∣∣∣∣ > √2aρn


≤ 2 · 2Nn · 2Ln exp

{
− a2n2ρ2n/2

n sup(s,x)∈R×X V
[
η
(
Zin, s, x

)
Ri (x)

]
+ a log (n)n1/γ+1h−2pU ρn/3

}

≤ 8NnLn exp

{
− a2 log (n)h−2pU /2

Ch−2pU + a [log (n)]1/2 n1/γ−1/2h−3pU /3

}
≤ 8nCL+CN−Ca

2 → 0 (A.14)

where the second inequality follows from Bernstein inequality applied to the real and imag-
inary parts separately, the third inequality follows from (A.8) and the definition of ρn, the
fourth inequality follows from Lemma’s condition that [log (n)]1/2 n1/γ−1/2h−pU = o (1) (cf.
Assumption 8(ii)), and the convergence follows by taking a large enough.
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2c. It follows from (A.6) that∣∣E [∆n (s, x)]− E
[
∆n (s, x)

]∣∣
≤ |s|E

[∣∣Zin − Zi∣∣ |Ri (x)|
]

= |s|E
[
1
{
|Zi| > log (n)n1/γ

}
|Zi| |Ri (x)|

]

≤ |s|E
[
1
{
|Zi|γ−1 > (log (n))γ−1 n1−1/γ

}
(log (n))γ−1 n1/γ−1 |Zi|γ |Ri (x)|

]
≤ C |s| (log (n))γ−1 n1/γ−1E [E [ |Zi|γ |Xit, Xiτ ] |Ri (x)|]
≤ CMn (log (n))γ−1 n1/γ−1 = O (ρn) , (A.15)

where the last inequality follows from Assumptions 3 and 6, and the equality follows from
Lemma’s conditions (cf. Assumption 8(iii)).

2d. By Markov inequality

Pr

{
sup

(s,x)∈[−Mn,Mn]×X

∣∣∆n (s, x)−∆n (s, x)
∣∣ > aρn

}
≤ nPr

{
|Zi| > log (n)n1/γ

}
≤ C (log (n))−γ .

2e. Using equation (A.7) and the results of parts 2b, 2c, and 2d we conclude that

sup
(s,x)∈[−Mn,Mn]×X

|∆n (s, x)− E [∆n (s, x)]| = Op (ρn) . (A.16)

3. Now consider the "deterministic" part, i.e. E [∆n (s, x)]. From (A.6):

E [∆n (s, x)] = i

∫ s

0

ζ
sE
[(
Zie

iζZi + ψUt (ζ|x)φUiτ (−ζ|x)− ψUτ (−ζ|x)φUit (ζ|x)
)
Ri (x)

]
dζ,

where ψUt (s|x) = E
[
Uite

isUit |Xit = x
]
and the order of integration can be changed by As-

sumption 3 and Fubini’s theorem. It follows from Assumption 4 that function E
[
Zie

isZi |Gtτx
]

of x belongs to D[−ς,ς]X
(
k
)
. Note that

E
[
Zie

isZiRi (x)
]

= E
[
ψYtτ (s|Xit, Xiτ )h−2pU K

(
Xit−x
hU

)
K
(
Xiτ−x
hU

)]
,

where

ψYtτ (s|xt, xτ )

= E
[

(Yit − Yiτ ) eis(Yit−Yiτ )
∣∣∣ (Xit, Xiτ ) = (xt, xτ )

]
= E

[
(m (xt, αi)−m (xτ , αi) + Uit − Uiτ ) eis(m(xt,αi)−m(xτ ,αi)+Uit−Uiτ )

∣∣∣xt, xτ]
= ψmtτ (s|xt, xτ )φUit (s|xt)φUiτ (−s|xτ )

+φm(xt,αi)−m(xτ ,αi) (s|xt, xτ )
(
ψUt (s|xt)φUiτ (−s|xτ )− φUit (s|xt)ψUτ (−s|xτ )

)
,
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where
ψmtτ (s|xt, xτ ) = E

[
(m (xt, αi)−m (xτ , αi)) e

is(m(xt,αi)−m(xτ ,αi))
∣∣∣xt, xτ] .

Note that ψmtτ (s|x, x) = 0 for all x ∈ X and hence

E [∆n (s, x)] = −i
∫ s

0
(ζ/s)

(
ϕYtτ (x)− ψYtτ (ζ|x, x)

)
dζ,

where

ϕYtτ (x) =

∫ ∫
ψYtτ (s|ξ1, ξ2) f(Xit,Xiτ ) (ξ1, ξ2)h

−2p
U K

(
ξ1−x
hU

)
KhU

(
ξ1−x
hU

)
dξ1dξ2. (A.17)

Note that

ψmtτ (s|xt, xτ ) = −i∂φm(xt,αi)−m(xτ ,αi) (s|xt, xτ ) /∂s,

ψUt (s|xt) = −i∂φUit (s|xt) /∂s.

Then, ψYtτ (s|x1, x2) ∈ D[−ς,ς]X×X
(
k
)
for some constant C due to Assumptions 4 and 5 and the fact

that ψmtτ (s|xt, xτ ), ψUt (s|xt), φUit (s|xt), and φm(xt,αi)−m(xτ ,αi) (s|xt, xτ ) are bounded due to
Assumption 3. Thus, using Assumptions 2 and 6 and equation (A.17) the standard argument
yields

sup
(s,x)∈[−ς,ς]×X

∣∣ϕYtτ (x)− ψYtτ (s|x, x)
∣∣ = O

(
hkU

)
, and hence

sup
(s,x)∈[−ς,ς]×X

|E [∆n (s, x)]| = O
(
h−kU

)
. (A.18)

Now consider any s ∈ [−Mn,−ς] ∪ [ς,Mn]:

E
[(
eisZi − E

[
eisZi |Gtτx

])
Ri (x)

]
=

∫ ∫ [
φm(xt,αi)−m(xτ ,αi) (s|x+ z1hU , x+ z2hU )φUit (s|x+ z1hU )φUiτ (−s|x+ z2hU )

−φUit (s|x)φUiτ (−s|x)
]
fXit,Xiτ (x+ z1hU , x+ z2hU )K (z1)K (z2) dz1dz2

≤ C
(

1 + |s|k
)
hkU

by Assumptions 4, 5, and 6. Therefore,

sup
(s,x)∈[−s,s]×X

|E [∆n (s, x)]| = O
((

1 + |s|k−1
)
hkU

)
. (A.19)

4. Combining the results of steps 2 and 3 one obtains

sup
(s,x)∈[−Mn,Mn]×X

|∆n (s, x)| = Op

(
[log (n) /(nh2pU )]1/2 +

(
1 +Mk−1

n

)
hkU

)
.

Denote f̂(Xit,Xiτ ) (x, x) = n−1
∑n

i=1Ri,tτ (x, hU ). Applying the result of Stone (1982) for
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all pairs t, τ 6= t,

sup
x∈X

∣∣∣f̂(Xit,Xiτ ) (x, x)− f(Xit,Xiτ ) (x, x)
∣∣∣ = Op

(
[log (n) /(nh2pU )]1/2 + hkU

)
.

Note that

s−1

(∑
t<τ n

−1∑n
i=1 e

is(Yit−Yiτ )Ri,tτ (x)∑
t<τ n

−1∑n
i=1Ri,tτ (x)

− φ2U (s|x)

)
=

∑
t<τ ∆n,tτ (s, x)∑

t<τ n
−1∑n

i=1Ri,tτ (x)
, (A.20)

and hence

sup
(s,x)∈[−Mn,Mn]×X

∣∣∣∣s−1(∣∣∣φ̂SU (s|x)
∣∣∣2 − φU (s|x)2

)∣∣∣∣ = Op

(
[log (n) /(nh2pU )]1/2 +

(
1 +Mk−1

n

)
hkU

)
.

The conclusion of the lemma now follows from the fact that
∣∣∣φ̂SU (s|x)

∣∣∣+ φU (s|x) ≥ φU (s|x)

for all (s, x) ∈ [−Mn,Mn]×X .

Lemma 5. Suppose Assumptions ID(i)-(vi),and 1-7 hold. Assume that nhU →∞, hU → 0,
[log (n)]1/2 n1/γ−1/2h

−d/2
Y (d), Mn → ∞, and (log (n))γ−3/2Mnh

d/2
Y (d)n1/γ−1/2 → 0 for d ∈

{p, 2p}. Then,

sup
(s,xt)∈[−Mn,Mn]×X

∣∣∣s−1 (φ̂Yit (s|xt)− φYit (s|xt)
)∣∣∣ = Op

(
ρYn (p)

)
and

sup
(s,xtτ )∈[−Mn,Mn]×X

∣∣∣s−1 (φ̂Yit (s|xtτ )− φYit (s|xtτ )
)∣∣∣ = Op

(
ρYn (2p)

)
,

where ρYn (d) =
[
log (n)

/(
nhdY (d)

)]1/2
+
(

1 +Mk−1
n

)
hkY (d).

Proof. Analogous to the proof of Lemma 4. �

Lemma 6. Suppose Assumptions ASYM, ID(i)-(vi), and 1-7 hold. Assume that (i) nhU →
∞, max {hU , hY (p)} → 0, (ii) [log (n)]1/2 n1/γ−1/2 max

{
h−pU , h

−p/2
Y (p)

}
→ 0, (iii) Mn →∞,

(log (n))γ−3/2Mn max
{
h−pU , h

−p/2
Y (p)

}
n1/γ−1/2 → 0, and Assumption 8(v) holds. Then,

sup
(s,xt)∈[−Mn,Mn]×X

∣∣∣s−1 (φ̂Uit (s|x)− φUit (s|x)
)/

φUit (s|x)
∣∣∣

= Op


(

1 +M
bφ
n

) [
[log (n) /(nh2pU )]1/2 +

(
1 +Mk

n

)
hkU

]
inf(s,x)∈[−Mn,Mn]×X φUit (s|x)φUiτ (−s|x)

 .

Proof. Fix any τ 6= t and define the event Gtτx = {Xit = Xiτ = x}. Define Ri,tτ (x) =

h−2pU κt,τi (x, hU ),

Atτn (s, x) =
Atτn1 (s, x)

Atτn2 (s, x)
=
n−1

∑n
i=1 Yite

is(Yit−Yiτ )Ri,tτ (x)

n−1
∑n

i=1 e
is(Yit−Yiτ )Ri,tτ (x)

, B
tτ

n (x) =

∑n
i=1 YitKhY (Xit − x)∑n
i=1KhY (Xit − x)

,
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Atτ (s, x) =
Atτ1 (s, x)

Atτ2 (s, x)
=
E
[
Yite

is(Yit−Yiτ )|Gtτx
]
f(Xit,Xiτ ) (x, x)

E
[
eis(Yit−Yiτ )|Gtτx

]
f(Xit,Xiτ ) (x, x)

, and Btτ (x) = E
[
Yit|Gtτx

]
.

Similar to step 2 of the proof of Lemma 4 one can show that

sup
(s,x)∈[−Mn,Mn]×X

∣∣∣∣∣n−1
n∑
i=1

(
Yite

is(Yit−Yiτ )Ri,tτ (x)− E
[
Yite

is(Yit−Yiτ )Ri,tτ (x)
])∣∣∣∣∣

= Op

([
log (n) /(nh2pU )

]1/2)
. (A.21)

Note that

E
[
Yite

is(Yit−Yiτ )|xtτ
]

= E
[
Yite

is(Yit−Yiτ )| (Xit, Xiτ ) = (xt, xτ )
]

= E
[
(m (xt, αi) + Uit) e

is(m(xt,αi)−m(xτ ,αi)+Uit−Uiτ )| (Xit, Xiτ ) = xt, xτ

]
= E

[
m (xt, αi) e

is(m(xt,αi)−m(xτ ,αi))|xt, xτ
]
φUit (s|xτ )φUiτ (−s|xτ ) .

+φm(xt,αi)−m(xτ ,αi) (s|xt, xτ )E
[
Uite

isUit
∣∣∣Xit = xt

]
φUiτ (−s|xτ ) .

Then, function E
[
Yite

is(Yit−Yiτ )|xtτ
]
f(Xit,Xiτ ) (xtτ ) of xtτ belongs to DRX×X

(
k
)
due to As-

sumptions 2-5. Thus, using the standard argument,

sup
(s,x)∈[−s,s]×X

∣∣∣E [Yiteis(Yit−Yiτ )Ri,tτ (x, hU )
]
− E

[
Yite

is(Yit−Yiτ )|Gtτx
]
f(Xit,Xiτ ) (x, x)

∣∣∣
= O

((
1 + sk

)
hkU

)
. (A.22)

Denote ρAn = [log (n) /(nh2pU )]1/2 + (1 + sk)hkU and

∆Atτkn (s, x) = Atτkn (s, x)−Atτk (s, x) , k = 1, 2.

Combine (A.21) and (A.22) to obtain

sup
(s,x)∈[−s,s]×X

∣∣∆Atτ1n∣∣ = Op (ρAn) .

Similarly, one can show that

sup
(s,x)∈[−s,s]×X

∣∣∆Atτ2n (s, x)
∣∣ = Op (ρAn) .

Define ∆Btτ
n (x) = Btτ

n (x)−Btτ (x). Then, it follows from Stone (1982) that

sup
x∈X

∣∣∆Btτ
n (x)

∣∣ = Op

([
log (n)

/(
nhpY (p)

)]1/2
+ hkY (p)

)
,

Then, supx∈X
∣∣∆Btτ

n (x)
∣∣ = Op (ρAn) holds by Assumption 8(v).
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From the identity Â1/Â2 −A1/A2 = ((Â1 −A1)A2 −A1(Â2 −A2))/(A2Â2) one obtains

Atτn1 (s, x)

Atτn2 (s, x)
− Atτ1 (s, x)

Atτ2 (s, x)
=

(
∆Atτn1 (s, x)

Atτ2 (s, x)
+
Atτ1 (s, x) ∆Atτn2 (s, x)

Atτ2 (s, x)2

)
%n (s, x) , (A.23)

where %n (s, x) = Atτ2 (s, x) /Atτn2 (s, x) =
(
1 + ∆Atτn2 (s, x) /Atτ2 (s, x)

)−1. Note that
Atτ1 (s, x) = E

[
(m (x, αi) + Uit) e

is(Uit−Uiτ )|Gtτx
]

=
(
E
[
m (x, αi) |Gtτx

]
φUit (s|x) + E

[
Uite

isUit |Xit = x
])
φUiτ (−s|x) ,

Atτ2 (s, x) = φUit (s|x)φUiτ (−s|x) .

Thus
Atτ1 (s, x)

Atτ2 (s, x)
= E

[
m (x, αi) |Gtτx

]
− i

∂ lnφUit (s|x)

∂s
.

where ln (·) is the principal value of complex logarithm. Note that %n (s, x) = 1 + op (1) when
the parenthesis term in (A.23) is op (1). Denote

∆AB,tτ
n (s, x) =

[
Atτn (s, x) +Btτ

n (x)
]
−
[
Atτ (s, x) +Btτ (x)

]
,

Then, equation (A.23) and Assumption ASYM yield

∣∣∆AB,tτ
n (s, x)

∣∣ ≤ C (1 + |s|bφ
) ∣∣∆Atτn1 (s, x)

∣∣+
∣∣∆Atτn2 (s, x)

∣∣
|Atτ2 (s, x)| %n (s, x) +

∣∣∆Btτ
n (x)

∣∣ ,
hence

inf
(s,x)∈[−Mn,Mn]×X

∣∣∆AB,tτ
n (s, x)

∣∣ = Op

(
(1 +M

bφ
n )[log (n) /(nh2pU )]1/2 + (1 +Mk

n)hkU
inf(s,x)∈[−Mn,Mn]×X

∣∣φUit (s|x)φUiτ (−s|x)
∣∣
)
.

(A.24)
Note that

φ̂Uit (s|x) = φUit (s|x)
1

T − 1

∑T

τ=1,τ 6=t
exp

(
i

∫ s

0
∆AB,tτ
n (ζ, x) dζ

)
.

Hence, for all s ∈ [Mn, 0) ∪ (0,Mn],∣∣∣s−1 (φ̂Uit (s|x)− φUit (s|x)
)
/φUit (s|x)

∣∣∣
≤ 1

T − 1

∑T

τ=1,τ 6=t
|s|−1

∣∣∣∣exp

(
i

∫ s

0
∆AB,tτ
n (ζ, x) dζ

)
− 1

∣∣∣∣
≤ C

1

T − 1

∑T

τ=1,τ 6=t
|s|−1

∫ s

0

∣∣∆AB,tτ
n (ζ, x)

∣∣ dζ
≤ C

1

T − 1

∑T

τ=1,τ 6=t
inf

(s,x)∈[−Mn,Mn]×X

∣∣∆AB,tτ
n (s, x)

∣∣ .
Thus the conclusion of the lemma follows from (A.24). �
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Proof of Theorem 3. Note that

F̂m (ω|xt)− Fm (ω|xt) =
1

2
+

∫ 1/hw

−1/hw

e−isω

2πis
φw (hws)

φYit (s|xt)
φUit (s|xt)

ds− Fm (ω|xt)

+

∫ 1/hw

−1/hw

e−isω

2πis
φw (hws)

[
φ̂Yit (s|xt)
φ̂Uit (s|xt)

−
φYit (s|xt)
φUit (s|xt)

]
ds

= A1n +A2n,

where φ̂Uit (s|xt) denotes φ̂
S

Uit (s|xt) or φ̂
AS

Uit (s|xt) when, respectively, SYM or ASYM holds.
The first term satisfies

A1n =
1

2
+

∫ 1/hw

−1/hw

e−isω

2πis
φw (hws)φm (s|xt) ds− Fm (ω|xt)

=

∫ ∞
−∞

Fm (ω − u|xt)Kw (hwu) du− Fm (ω|xt) .

Thus sup(ω,x)∈R×X |A1n| = O
(
hkFw

)
due to Assumptions 1 and 7 by the standard argument.

Then, similar to the expansion in (A.23) (and also similar to equation (A.33) in Schennach
(2004b)) we obtain

1

s

[
φ̂Yit (s|xt)
φ̂Uit (s|xt)

−
φYit (s|xt)
φUit (s|xt)

]
=[

φ̂Yit(s|xt)− φYit(s|xt)
sφUit(s|xt)

−
φYit(s|xt) [φ̂Uit(s|xt)− φUit(s|xt)]

sφUit(s|xt)
2

](
1 +

φ̂Uit(s|xt)− φUit(s|xt)
φUit(s|xt)

)−1
.

Note that
∣∣φYit (s|xt)

/
φUit (s|xt)

∣∣ = |φm (s|xt)| and hence |φm (s|xt)| < C for |s| ≤ 1 and

|φm (s|xt)| < C |s|−(kF−1) for |s| > 1 due to Assumption 1.
Denote

%n = sup
(s,xt)∈[−h−1w ,h−1w ]×X

∣∣∣∣∣ φ̂Uit (s|xt)− φUit (s|xt)
φUit (s|xt)

∣∣∣∣∣ .
When Assumption ASYM holds, Lemma 6 gives

%n = Op

(
h
−bφ−1
w

[
[log (n) /(nh2pU )]1/2 + h−rw hkU

]
χ2
(
h−1w

))
,

with r = k. If Assumption SYM holds Lemma 4 yields the same result with bφ = 0 and
r = k − 1. Assumption 8(iv) ensures that %n = op (1).
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Then,

sup
(ω,xt)∈R×X

∣∣∣∣∣
∫ h−1w

−h−1w

e−isω

2πis
φw (hws)

[
φ̂Yit (s|xt)
φ̂Uit (s|xt)

−
φYit (s|xt)
φUit (s|xt)

]
ds

∣∣∣∣∣
≤ (C + op (1))

 sup
(s,xt)∈[−h−1w ,h−1w ]×X

s−1
∣∣∣φ̂Yit (s|xt)− φYit (s|xt)

∣∣∣
h−1w χ

(
h−1w

)

+ (C + op (1))

 sup
(s,xt)∈[−h−1w ,h−1w ]×X

|φm (s|xt)|
∣∣∣∣∣ φ̂Uit (s|xt)− φUit (s|xt)

sφUit (s|xt)

∣∣∣∣∣
h−1w

= (C + op (1)) (B1n +B2n) ,

By Lemma 5one obtains

B1n = Op

([[
log (n)

/(
nhpY (p)

)]1/2
+ h

−(k−1)
w hkY (p)

]
h−1w χ

(
h−1w

))
,

while Lemmas 4 and 6 give

B2n ≤ Op

((
[log (n) /(nh2pU )]1/2 + hr−1U

)
h−1w

)
+ sup
s∈[1,h−1w ]

[
s1−kF sup

(s,xt)∈[−s,s]×X

∣∣∣∣∣ φ̂Uit (s|xt)− φUit (s|xt)
sφUit (s|xt)

∣∣∣∣∣
]
h−1w

= Op

((
[log (n) /(nh2pU )]1/2 + hr−1U

)
h−1w

)
+Op

 sup
s∈[1,h−1w ]

[
s1−kFχ2 (s) sbφ

(
[log (n) /(nh2pU )]1/2 + srhkU

)]
h−1w


= Op

(
max

{
1, h

kF−1−bφ
w χ2

(
h−1w

)}(
[log (n) /(nh2pU )]1/2 + h−rw hkU

)
h−1w

)
.

Therefore, sup(ω,xt)∈R×X

∣∣∣F̂m (ω|xt)− Fm (ω|xt)
∣∣∣ = Op (βn (p)). In exactly the same way

(only the term B1n differs) one obtains that sup(ω,xtτ )∈R×X×X

∣∣∣F̂m (ω|xtτ )− Fm (ω|xtτ )
∣∣∣ =

Op (βn (2p)). �

Proof of Theorem 4. 1. We can now write down optimal hU and hY (d) for d ∈ {p, 2p} as
functions of hw. We get

h∗Y (hw, d) ∼
[
(log (n) /n)1/2 hk−1w

]2/(2k+d)
, (A.25)

h∗U (hw) ∼
[
(log (n) /n)1/2 hrw

]1/(k+p)
. (A.26)
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With optimal hY and hU one can simplify βn (d):

βn (d) ∼ hkFw + (log (n) /n)
k

2k+d h
− (k−1)d

2k+d
−1

w χ
(
h−1w

)
+(log(n)/n)

k
2(k+p) h

− rp

k+p
−1

w max
{
1, h

kF−1−bφ
w χ2

(
h−1w

)}
=T1+T2+T3. (A.27)

Under Assumption OS we have χ
(
h−1w

)
≤ Ch−λw and bφ = 0.

2. Consider the case hkF−1w χ2
(
h−1w

)
→ ∞ as hw → 0, i.e. kF < 2λ + 1. The stochastic

order of the terms T1 and T2 is be the same when hw ∼ (ln (n) /n)κOS1(d), where

κOS1 (d) =
k
/(

2k + d
)

kF + λ+ 1 +
(
k − 1

)
d/
(
2k + d

) .
Similarly, the stochastic order of the terms T1 and T3 is the same when hw ∼ (log (n) /n)κOS2 ,
where

κOS2 =
k
/(

2k + 2p
)

2
(
λ+ 1

)
+ rp/

(
k + p

) ,
which does not depend on d, since the terms T1 and T3 do not depend on d. When kF ≥ k̃F (d)
holds, it is easy to show that βn (d) converges to zero at the fastest rate when the stochastic
order of terms T1 and T2 is balanced (and hence hw ∼ (ln (n) /n)κOS1(d)). In this case the
stochastic order of the term T3 is no bigger (smaller, if kF > k̃F (d)) than that of T3. Similarly,
under the condition kF < k̃F (d) one can show that βn (d) tends to zero at the fastest rate
when the terms T1 and T3 are balanced (hence hw ∼ (log (n) /n)κOS2). In this case the term
T2 is smaller (in the limit) than the terms T1 and T3.

3. Now consider the case kF > 2λ−1. When d = 2p and λ ≥ 1 term T2 always dominates

term T3; thus in this case the rate of convergence is Op
(

(ln (n) /n)kFκOS1(2p)
)
. When d = p,

terms T1 and T3 have the same stochastic order when hw ∼ (log (n) /n)κOS3

κOS3 =
k/
(
2k + 2p

)
kF + 1 + rp/

(
k + p

) ,
while T1 and T2 are balanced when hw ∼ (log (n) /n)κOS1(p) and with these bandwidths term
T3 is larger than T2 in the limit when kF > k̆F = λ

(
2k/p+ 1

)
+ k − 2− 2r. Notice also that

if λ is close to zero term T3 always dominates T2.
Define

κOS,U =
k/
(
2k + 2p

)
max

{
kF , 2λ+ 1

}
+ 1 + rp/

(
k + p

) .
We obtain that βn (d) converges to zero at the fastest rate when the bandwidth hw satisfies
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hw ∼ (ln (n) /n)κOS(d,kF ), where

κOS (2p, kF ) =

{
κOS,U , when kF < k̃F (2p) and kF < 2λ+ 1,
κOS1 (2p) , otherwise.

κOS (p, kF ) =


κOS,U , when kF ≤ k̃F (p) and kF ≤ 2λ+ 1,

κOS1 (p) , when kF > k̃F (p) and kF ≤ 2λ+ 1,

κOS1 (p) , when kF ≤ k̆F and kF > 2λ+ 1,

κOS,U , when kF > k̆F and kF > 2λ+ 1.

and hence βn (d) = O
(

(ln (n) /n)kFκOS(d,kF )
)
and the corresponding optimal bandwidths

hY (d) and hU are given by (A.25) and (A.26), respectively. It is only left to check that
Assumptions 8(ii)-(v) hold for optimal hw, hU , hY (d) in steps 2 and 3 of the proof. A
tedious but straightforward analysis shows that Assumption 9 is suffi cient to ensure that the
conditions of Assumption 8 are indeed satisfied for the optimal bandwidths. �
Proof of Theorem 5. Under Assumption SS we have χ

(
h−1w

)
≤ Chλ0w exp

(
h−λw /µ

)
and the

rate (A.27) becomes

βn (d) ∼ hkFw + (log (n) /n)
k

2k+d h
− (k−1)d

2k+d
−1−C2

w exp
(
h−λw /C3

)
+ (log (n) /n)

k
2(k+p) h

− rp

k+p
−1

w max
{

1, h
kF−1−bφ−2C2
w exp

(
2h−λw /C3

)}
.(A.28)

It must be that hw ≤ C (ln (n))−1/λ for some positive constant C, otherwise exp
(
h−λw /µ

)
would grow with n at a faster than polynomial rate and F̂m (ω|xtτ ) would diverge. Thus,

one immediately concludes that βn (d) = O
(

(lnn)−kF /λ
)
, for d ∈ {p, 2p}. One can take

hw = CSS (lnn)−1/λ, where the constant CSS should be taken suffi ciently small so that the
term hkFw is not dominated by the other terms in equation (A.28) and Assumption 8(iv) holds.
Assumptions 8(i),(iii), and (v) hold for the optimal hY (d) and hU when hw is logarithmic.
Finally, Assumption 10 ensures that Assumption 8(ii) holds. �
Proof of Corollary 6. For example, see the proof of Theorem 3.1 in Ould-Saïd, Yahia, and
Necir (2009). �
Proof of Theorem 7. Define Ωxω = X × [δ, 1− δ] and take εω = min {δ/2, εX /2}. Then
the conditions of Corollary 6 are satisfied and the conclusion of the theorem follows. �
Proof of Theorem 8. The assumptions of the theorem ensure that functions Qαi|Xit (q|xt),
Qαi|Xit,Xiτ (q|xt, xτ ), and hence α (q|xt) and α (q|xt) are uniformly continuous in xt and xτ
for all (xt, xτ ) ∈ X × X , q ∈ [δ/2, 1− δ/2] and t, τ 6= t. Thus there is an εω > 0 such that
the conditions of Corollary 6 hold with the set Ωxω = Sx,α (δ). Then the conclusions of the
theorem follow. �
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6.6 Results of Monte Carlo Study

Design I, n = 2500, T = 2
εit ∼Laplace εit ∼ N (0, 1)

hY hw 0.875 0.75 0.5 0.25 0.125 0.875 0.75 0.5 0.25 0.125

RIMSE 1.06 0.65 0.38 0.42 1.02 0.73 0.49 0.36 0.42 0.80
0.2 0.2 RIBIAS2 0.73 0.35 0.14 0.19 0.76 0.44 0.21 0.07 0.16 0.58

RIVAR 0.76 0.55 0.35 0.38 0.69 0.58 0.44 0.35 0.39 0.55

RIMSE 0.49 0.30 0.19 0.22 0.38 0.47 0.33 0.25 0.31 0.46
0.2 0.4 RIBIAS2 0.15 0.06 0.01 0.05 0.19 0.26 0.16 0.03 0.16 0.32

RIVAR 0.47 0.29 0.19 0.22 0.32 0.39 0.29 0.25 0.27 0.34

RIMSE 0.99 0.63 0.31 0.40 1.03 0.79 0.52 0.35 0.45 1.03
0.4 0.2 RIBIAS2 0.72 0.41 0.14 0.26 0.80 0.52 0.27 0.13 0.21 0.76

RIVAR 0.68 0.47 0.27 0.31 0.65 0.59 0.44 0.32 0.40 0.69

RIMSE 0.38 0.23 0.16 0.19 0.30 0.42 0.30 0.23 0.26 0.41
0.4 0.4 RIBIAS2 0.10 0.09 0.07 0.09 0.14 0.22 0.16 0.10 0.12 0.24

RIVAR 0.36 0.22 0.14 0.17 0.26 0.36 0.25 0.21 0.23 0.33

RIMSE 0.38 0.27 0.13 0.27 0.39 0.46 0.34 0.17 0.32 0.46
0.4 0.6 RIBIAS2 0.33 0.23 0.07 0.23 0.35 0.39 0.29 0.07 0.25 0.39

RIVAR 0.19 0.14 0.11 0.13 0.18 0.24 0.19 0.16 0.19 0.24

RIMSE 0.32 0.22 0.18 0.22 0.36 0.40 0.31 0.25 0.28 0.45
0.6 0.4 RIBIAS2 0.13 0.13 0.13 0.15 0.23 0.22 0.21 0.17 0.15 0.25

RIVAR 0.30 0.18 0.13 0.15 0.27 0.34 0.24 0.19 0.23 0.37

RIMSE 0.38 0.29 0.16 0.27 0.42 0.45 0.36 0.19 0.29 0.45
0.6 0.6 RIBIAS2 0.35 0.26 0.12 0.25 0.39 0.40 0.32 0.13 0.24 0.38

RIVAR 0.14 0.12 0.10 0.12 0.16 0.20 0.17 0.14 0.17 0.24

INFEASIBLE RIMSE 0.21 0.17 0.15 0.17 0.21 0.21 0.17 0.15 0.16 0.21

Table 1. Design I, n = 2500, T = 2. Monte Carlo results of estimation of functions ĥ (·, q) for quantiles
q ∈ {0.875, 0.75, 0.5, 0.25, 0.125}. RIMSE, RIBIAS2, and RIVAR stand for square roots of integrated
Mean Squared Error, Squared Bias, and Variance, respectively.
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Design I, n = 10000, T = 2
εit ∼ Laplace εit ∼ N (0, 1)

hY hw 0.875 0.75 0.5 0.25 0.125 0.875 0.75 0.5 0.25 0.125

RIMSE 0.84 0.49 0.21 0.32 0.78 0.62 0.39 0.24 0.32 0.70
0.2 0.2 RIBIAS2 0.67 0.33 0.08 0.22 0.62 0.41 0.20 0.05 0.15 0.54

RIVAR 0.52 0.36 0.20 0.24 0.48 0.47 0.34 0.23 0.28 0.45

RIMSE 0.31 0.18 0.11 0.13 0.19 0.31 0.21 0.15 0.20 0.29
0.2 0.4 RIBIAS2 0.07 0.05 0.02 0.03 0.08 0.16 0.11 0.03 0.10 0.18

RIVAR 0.30 0.17 0.10 0.12 0.18 0.27 0.19 0.15 0.17 0.23

RIMSE 0.85 0.49 0.19 0.33 0.82 0.68 0.43 0.24 0.36 0.88
0.4 0.2 RIBIAS2 0.73 0.37 0.12 0.28 0.72 0.49 0.27 0.13 0.24 0.70

RIVAR 0.44 0.31 0.15 0.17 0.41 0.47 0.33 0.21 0.27 0.53

RIMSE 0.21 0.15 0.10 0.13 0.19 0.29 0.21 0.15 0.18 0.27
0.4 0.4 RIBIAS2 0.09 0.08 0.07 0.09 0.13 0.16 0.14 0.09 0.11 0.17

RIVAR 0.19 0.12 0.07 0.09 0.14 0.25 0.17 0.12 0.15 0.21

RIMSE 0.34 0.24 0.09 0.24 0.37 0.38 0.28 0.11 0.26 0.40
0.4 0.6 RIBIAS2 0.32 0.23 0.07 0.23 0.36 0.35 0.26 0.07 0.23 0.37

RIVAR 0.10 0.08 0.06 0.07 0.09 0.15 0.11 0.09 0.11 0.15

RIMSE 0.20 0.16 0.15 0.18 0.29 0.30 0.23 0.20 0.22 0.37
0.6 0.4 RIBIAS2 0.13 0.12 0.13 0.16 0.25 0.18 0.18 0.17 0.17 0.25

RIVAR 0.15 0.10 0.06 0.08 0.15 0.24 0.15 0.11 0.14 0.27

RIMSE 0.35 0.26 0.13 0.25 0.40 0.38 0.31 0.15 0.25 0.40
0.6 0.6 RIBIAS2 0.34 0.26 0.12 0.24 0.39 0.36 0.29 0.13 0.23 0.38

RIVAR 0.07 0.06 0.05 0.06 0.08 0.12 0.10 0.07 0.10 0.15

INFEASIBLE RIMSE 0.13 0.11 0.09 0.10 0.11 0.13 0.11 0.09 0.10 0.12

Table 2. Design I, n = 10000, T = 2. Monte Carlo results of estimation of functions ĥ (·, q) for
quantiles q ∈ {0.875, 0.75, 0.5, 0.25, 0.125}. RIMSE, RIBIAS2, and RIVAR stand for square roots of
integrated Mean Squared Error, Squared Bias, and Variance, respectively.
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Design II, n = 2500, T = 2
εit ∼ Laplace εit ∼ N (0, 1)

hY hw 0.875 0.75 0.5 0.25 0.125 0.875 0.75 0.5 0.25 0.125

RIMSE 0.46 0.24 0.16 0.34 0.69 0.48 0.26 0.22 0.36 0.59
0.4 0.4 RIBIAS2 0.35 0.15 0.09 0.22 0.49 0.31 0.11 0.09 0.28 0.51

RIVAR 0.30 0.18 0.14 0.26 0.48 0.37 0.24 0.20 0.22 0.30

RIMSE 0.28 0.27 0.13 0.31 0.56 0.33 0.32 0.16 0.41 0.68
0.4 0.6 RIBIAS2 0.19 0.23 0.07 0.28 0.53 0.20 0.25 0.07 0.37 0.65

RIVAR 0.20 0.14 0.11 0.13 0.18 0.26 0.19 0.15 0.16 0.20

RIMSE 0.47 0.25 0.18 0.32 0.60 0.53 0.29 0.24 0.40 0.60
0.6 0.4 RIBIAS2 0.37 0.20 0.14 0.23 0.47 0.37 0.18 0.17 0.33 0.53

RIVAR 0.29 0.16 0.12 0.21 0.38 0.38 0.22 0.17 0.22 0.28

RIMSE 0.31 0.27 0.14 0.33 0.56 0.34 0.29 0.17 0.42 0.67
0.6 0.6 RIBIAS2 0.26 0.24 0.10 0.31 0.54 0.25 0.25 0.11 0.40 0.65

RIVAR 0.17 0.12 0.09 0.10 0.13 0.24 0.16 0.12 0.14 0.17

INFEASIBLE RIMSE 0.24 0.17 0.14 0.17 0.22 0.24 0.17 0.14 0.16 0.22

Table 3. Design II, n = 2500, T = 2. Monte Carlo results of estimation of functions ĥ (·, q) for quantiles
q ∈ {0.875, 0.75, 0.5, 0.25, 0.125}. RIMSE, RIBIAS2, and RIVAR stand for square roots of integrated
Mean Squared Error, Squared Bias, and Variance, respectively.

Design II, n = 10000, T = 2
εit ∼ Laplace εit ∼ N (0, 1)

hY hw 0.875 0.75 0.5 0.25 0.125 0.875 0.75 0.5 0.25 0.125

RIMSE 0.38 0.19 0.11 0.26 0.52 0.41 0.20 0.15 0.31 0.53
0.4 0.4 RIBIAS2 0.35 0.16 0.08 0.19 0.42 0.33 0.13 0.11 0.27 0.48

RIVAR 0.16 0.10 0.07 0.17 0.31 0.23 0.15 0.11 0.15 0.22

RIMSE 0.24 0.24 0.09 0.29 0.52 0.26 0.26 0.10 0.36 0.62
0.4 0.6 RIBIAS2 0.21 0.23 0.07 0.28 0.51 0.21 0.23 0.06 0.35 0.60

RIVAR 0.11 0.07 0.05 0.06 0.08 0.16 0.11 0.08 0.10 0.12

RIMSE 0.42 0.22 0.15 0.24 0.49 0.48 0.25 0.20 0.33 0.53
0.6 0.4 RIBIAS2 0.39 0.20 0.14 0.20 0.42 0.40 0.20 0.17 0.30 0.49

RIVAR 0.15 0.08 0.06 0.12 0.24 0.25 0.14 0.10 0.14 0.21

RIMSE 0.28 0.25 0.11 0.31 0.53 0.29 0.25 0.13 0.38 0.62
0.6 0.6 RIBIAS2 0.26 0.24 0.11 0.31 0.53 0.25 0.23 0.11 0.37 0.61

RIVAR 0.09 0.06 0.05 0.05 0.06 0.14 0.09 0.07 0.08 0.10

INFEASIBLE RIMSE 0.15 0.10 0.09 0.10 0.13 0.14 0.10 0.09 0.10 0.13

Table 4. Design II, n = 10000, T = 2. Monte Carlo results of estimation of functions ĥ (·, q) for
quantiles q ∈ {0.875, 0.75, 0.5, 0.25, 0.125}. RIMSE, RIBIAS2, and RIVAR stand for square roots of
integrated Mean Squared Error, Squared Bias, and Variance, respectively.

56



Design III, n = 2500, T = 2
εit ∼ Laplace εit ∼ N (0, 1)

hY hw 0.875 0.75 0.5 0.25 0.125 0.875 0.75 0.5 0.25 0.125

RIMSE 0.29 0.23 0.19 0.23 0.44 0.37 0.29 0.23 0.25 0.35
0.4 0.4 RIBIAS2 0.16 0.14 0.10 0.07 0.24 0.20 0.17 0.10 0.08 0.18

RIVAR 0.25 0.18 0.16 0.22 0.37 0.31 0.24 0.21 0.24 0.30

RIMSE 0.40 0.17 0.14 0.18 0.37 0.44 0.35 0.26 0.24 0.35
0.6 0.4 RIBIAS2 0.36 0.11 0.07 0.11 0.33 0.27 0.26 0.17 0.09 0.19

RIVAR 0.17 0.14 0.12 0.14 0.16 0.35 0.23 0.19 0.23 0.29

RIMSE 0.36 0.26 0.21 0.20 0.39 0.44 0.21 0.17 0.22 0.43
0.4 0.6 RIBIAS2 0.24 0.21 0.15 0.07 0.23 0.37 0.11 0.08 0.12 0.37

RIVAR 0.27 0.16 0.14 0.18 0.32 0.25 0.19 0.16 0.18 0.23

RIMSE 0.41 0.20 0.16 0.18 0.37 0.42 0.23 0.20 0.22 0.42
0.6 0.6 RIBIAS2 0.39 0.16 0.13 0.14 0.34 0.35 0.16 0.13 0.14 0.37

RIVAR 0.14 0.12 0.1 0.11 0.13 0.23 0.17 0.14 0.16 0.19

INFEASIBLE RIMSE 0.22 0.19 0.20 0.18 0.24 0.21 0.20 0.20 0.18 0.24

Table 5. Design III, n = 2500, T = 2. Monte Carlo results of estimation of functions ĥ (·, q) for
quantiles q ∈ {0.875, 0.75, 0.5, 0.25, 0.125}. RIMSE, RIBIAS2, and RIVAR stand for square roots of
integrated Mean Squared Error, Squared Bias, and Variance, respectively.

Design III, n = 10000, T = 2
εit ∼ Laplace εit ∼ N (0, 1)

hY hw 0.875 0.75 0.5 0.25 0.125 0.875 0.75 0.5 0.25 0.125

RIMSE 0.18 0.17 0.13 0.14 0.33 0.25 0.23 0.16 0.18 0.26
0.4 0.4 RIBIAS2 0.12 0.14 0.10 0.06 0.23 0.13 0.18 0.10 0.09 0.14

RIVAR 0.13 0.09 0.09 0.13 0.24 0.21 0.15 0.12 0.16 0.21

RIMSE 0.37 0.13 0.09 0.13 0.32 0.37 0.15 0.11 0.16 0.37
0.4 0.6 RIBIAS2 0.36 0.11 0.07 0.11 0.31 0.35 0.10 0.07 0.11 0.34

RIVAR 0.08 0.07 0.06 0.07 0.08 0.14 0.11 0.09 0.11 0.14

RIMSE 0.28 0.23 0.18 0.13 0.29 0.34 0.30 0.21 0.17 0.25
0.6 0.4 RIBIAS2 0.24 0.21 0.16 0.08 0.23 0.24 0.27 0.18 0.09 0.17

RIVAR 0.15 0.09 0.08 0.10 0.18 0.25 0.13 0.11 0.14 0.18

RIMSE 0.40 0.17 0.13 0.14 0.34 0.39 0.18 0.16 0.17 0.37
0.6 0.6 RIBIAS2 0.39 0.16 0.12 0.13 0.33 0.36 0.16 0.14 0.14 0.36

RIVAR 0.08 0.06 0.05 0.05 0.06 0.14 0.09 0.08 0.09 0.11

INFEASIBLE RIMSE 0.13 0.12 0.11 0.10 0.14 0.13 0.12 0.11 0.10 0.14

Table 6. Design III, n = 10000, T = 2. Monte Carlo results of estimation of functions h (·, q) for
quantiles q ∈ {0.875, 0.75, 0.5, 0.25, 0.125}. RIMSE, RIBIAS2, and RIVAR stand for square roots of
integrated Mean Squared Error, Squared Bias, and Variance, respectively.

57



Figure 1. Design I. Monte Carlo results of estimation of functions h (·, q) for quantiles q ∈ {0.875, 0.75,

0.5, 0.25, 0.125}. Panels (a) and (b) correspond to n = 2500, while panels (c) and (d) correspond to
n = 10000. Panels (a) and (c) correspond to εit ∼ i.i.d. Laplace, and panels (b) and (d) correspond
to εit ∼ i.i.d.N (0, 1). The bandwidths are hY = hw = 0.4 for panels (a)-(c). Panel (e) presents the
infeasible estimator (see the main text for description) with n = 2500 and εit ∼ i.i.d.N (0, 1). For
each x ∈ [0.1, 0.9] and q ∈ {0.875, 0.75, 0.5, 0.25, 0.125} the true line corresponds to the true value of
h(x, q), estimated median line is the median of ĥ(x, q) over the simulation runs, and estimation band
represents the area between 0.05-th and 0.95-th quantiles of ĥ(x, q) over the simulation runs.
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