
Errors-In-Variables in Large Nonlinear

Panel and Network Models

Kirill S. Evdokimov∗ Andrei Zeleneev†‡

This version: January 2020

Abstract

We consider estimation of general nonlinear semiparametric panel data models

with fixed effects. Estimation of such models implicitly relies on the “within’ vari-

ation of covariates, which aggravates the Errors-In-Variables (EIV) bias problem.

First, we derive the formulas for the bias of m-estimators in large panel data. We

show that the bias of common parameters includes both the direct effect of EIV

and the EIV bias of the incidental parameters (fixed effects). Then, we propose an

estimator that removes the EIV bias in nonlinear models using panel instrumental

variables. We show how lagged values of covariates can serve as such instruments

in panel data. The estimator does not involve any nonparametric estimation, and

can accommodate serially correlated and/or multivariate measurement errors. We

establish the asymptotic properties of the estimator. Combined with a jackknife

procedure, the estimator is asymptotically normal and unbiased. The properties

of the estimator are illustrated in a Monte Carlo simulation. In addition, the esti-

mation approach can be adapted for estimation of large network data models with

measurement errors. In particular, we show how the network structure provides

instruments needed to eliminate the EIV bias.
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1 Introduction

The use of panel data in Economics is widespread, thanks to its ability to account for

unobserved time-invariant individual heterogeneity. The concern about the potential

measurement errors in the data is also widespread. Estimation of the fixed effects models

relies on within variation of covariates, which exacerbates the errors-in-variables problem.

The issue of measurement errors in linear panel models is relatively well understood.

In the seminal paper, Griliches and Hausman (1986) suggest using lagged values of co-

variates as readily available instruments. They point out that such instruments are only

valid if one is able to difference out the fixed-effects, and investigate the restrictions on

the dynamics of the measurement errors that ensures that the model parameters can be

identified and estimated.

This paper considers estimation of general nonlinear semiparametric panel data mod-

els, such as, e.g., static and dynamic panel probit. Several features of these models make

dealing with the measurement errors a hard problem. Addressing the errors-in-variables

problem in nonlinear models is known to be difficult by itself. In the nonlinear panel data

settings it is further complicated by the incidental parameter problem due to inability to

difference out fixed effects. Potential temporal dependence of measurement errors is yet

another difficulty.

We propose estimators that are robust to measurement errors. The estimators are easy

to compute, and do not require nonparametric estimation or simulation. The estimators

have zero mean asymptotically normal distribution, and remove both the measurement

error and the incidental parameters biases.

Our results build on a non-standard asymptotic approximation. Let N denote the

number of cross-section units, T denote number of time-periods, and Σ denote the

variance-covariance matrix of the vector of the measurement errors. We assume that

N →∞, T →∞, ‖Σ‖ → 0 jointly. The choice of asymptotic approximation determines

the scope of applicability of our results. First, we model both N and T as increasing.

This is a necessary condition for consistency in general nonlinear panel models.1 The

existing literature suggests that this assumption can provide a reasonably good approx-

imation to finite sample behavior of the estimators as long as T ' 10 and NT is large.

Second, we model variance of measurement errors as shrinking with the sample size.

This assumption allows approximate the settings in which bias and standard errors of

1Apart from certain particular cases, if, for example, T is treated as fixed, one can only hope to
obtain bounds on the parameter values, see Honoré and Tamer (2006) and Chernozhukov et al. (2013).
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the estimators are of comparable magnitudes, while allowing sample size to grow.2 This

provides a better approximation of the finite sample properties of estimators and at the

same time leads to major simplifications for the estimation procedures. In particular,

our approach avoids estimation of any infinite-dimensional nuisance parameters.

We begin our analysis with deriving the bias expressions for the panel data m-

estimators in the presence of errors-in-variables. In general, measurement errors not

only directly bias the parameters of interest, but also bias the incidental parameters.

Since in nonlinear models fixed effects cannot be differenced out, errors-in-variables bias

in the incidental parameters generally contributes to the bias of the parameters of inter-

est. Thus, a successful estimation approach needs to address the measurement error bias

in the incidental parameters.

One important observation is that in many settings of interest, the attenuation bias

and the incidental parameter bias have the opposite signs. In such cases, correcting

for incidental parameter bias without correcting the measurement error bias will usually

worsen the performance of the estimators. We illustrate this point below in theoretical

examples and Monte Carlo experiments.

To leverage the insights of GH86 we set the problem in the more general context of the

moment conditions framework, which allows making use of the instrumental variables.

Our estimators are panel GMM estimators. These estimators generalize z-estimators for

panel data, and, accordingly, suffer from the incidental parameter bias of order T−1. The

properties of general large-T panel GMM models have been studied by FL13, and our

large sample theory builds on their results.

Measurement error literature. [TBA]

We focus on the large-T settings. [Literature review of large-T panel data here.]

Deriving the bias of the m-estimators requires analyzing the higher-order expansions

of the estimators of the incidental parameters as in Rilstone et al. (1996) and Bao and

Ullah (2007). We extended their results to the settings with measurement errors.

We note that the analysis using ”small” measurement error is well known. Including

Wolter and Fuller (1982); Chesher (1991). Crucially, these papers and a large number

of papers in the Statistics literature had either assumed that (relevant features of) the

distribution of the measurement error to be known (or perhaps estimable from a separate

dataset), or performed sensitivity checks, showing how the estimates vary as functions of

2The textbook assumption viewing variance of the measurement errors suggests that in large samples
bias is far bigger than standard error. To reconcile smaller magnitudes of the bias one needs to either
make assumptions about the values of true parameter vector, or assume that the sample size is not that
large.
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σ2. The goal of this paper is to address the typical interest of practitioners that do not

have additional information about the distribution of the measurement error, but want

to obtain point estimates and valid confidence intervals that account for the EIV bias.

The earlier papers did not consider estimation of σ2 and the related issues of ”moderate”

measurement error issues that we discuss below. Finally, in contrast to the rest of the

literature we consider the settings with incidental parameter problems.

Analysis of Evdokimov and Zeleneev (2016) is appropriate for cross-section and short

panel data that can be estimated from the data containing a very small number of time

periods. In this paper we address the problem of incidental parameters, and its interaction

with problem of measurement error. We derive higher order properties of m-estimators

in the presence of measurement error. To the best of our knowledge, this is the first

paper to propose feasible estimators for large-T fixed-effect panel data models that are

robust to the presence of measurement errors.

Modeling techniques/devices such as local-to-zero approximations (e.g., Staiger and

Stock (1997)) have proven themselves to be very useful for analysis of some otherwise

really complicated problems.

Likewise, our analysis following local-to-zero asymptotic approximations focuses at-

tention on the most relevant features of the problem and of the distribution of the mea-

surement errors, and allows us to provide a practical approach for the settings where

none was previously available.

The term ”small” measurement error approximation is a misnomer. As shall be clear

from the subsequent analysis, the corresponding bias can be larger than the incidental

parameter bias (can asymptotically dominate). As we illustrate in the Monte Carlo

experiments, the approach works well with rather large measurement errors that cause

naive estimators to have large bias (sometimes much larger than the incidental parameter

bias).

In Section 3, we begin with the analysis with a simpler, although sometimes also

most practical case, given the data limitations often encountered. We then extend the

estimation approach to handle serially correlated measurement errors, and measurement

errors of larger magnitude.

Section ?? focuses on the choice of instruments. We show how the insights of GH86

can be applied in the nonlinear panel data settings.

Section 4 develops the large sample theory for the proposed estimators. The estima-

tors are shown to be consistent, asymptotically normally distributed and asymptotically

unbiased. The formulas for the estimation of the asymptotic variances are also provided.
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Section 5 considers the settings in which the data comes from a large network. Such

network data can be related to the large-T panel data. We show how the errors-in-

variables bias can be addressed in the network settings, and how the network structure

can provide instruments to identify the model.

The proofs are collected in the Appendix.

Notation. ET [At] ≡ 1
T

∑T
t=1At, ENT [Ait] ≡ 1

NT

∑N
i=1

∑T
t=1Ait. Also, let Ei [Ait] ≡

plimT→∞
1
T

∑T
t=1Ait, i.e., Ei [Ait] is the expectation w.r.t. the distribution of the i’th

cross-section. We use [k] to denote 1, . . . , k.

2 Biases of m-estimators in large-T panel data

Consider m-estimator of the form(
θ̂

m
, α̂m

1 , . . . , α̂
m
N

)
= argmax

θ,α1,...,αN

1

NT

N∑
i=1

T∑
t=1

` (Xit, Sit, θ, αi) . (1)

where θ ∈ Rdθ and αi ∈ Rdα . Here Xit are the mismeasured covariates, while Sit collects

all other observed variables. The primary example is the (quasi-)MLE estimator with

` ≡ log f . We use superscript “m” to denote the m-estimators.

In this section we obtain bias formula for such estimators. In the following sections

we introduce estimators that are robust to the presence of measurement errors.

We assume that the true parameters solve the population problem

(θ0, αi0) = argmax
θ,αi

E [` (X∗it, Sit, θ, αi)] . (2)

Example 1 Suppose Yit is binary, and

E [Yit|X∗it,Wit] = Λ
(
αi0 + θ′0,1X

∗
it + θ′0,WWit

)
,

where Λ is the CDF of a continuous distribution, such as Logistic or Normal. Then

θ0 = (θ0,1, θ0,W ), Sit = (Yit,Wit), and

` (Xit, Sit, θ, αi) = Yit log Λ (αi + θ′1X
∗
it + θ′WWit)+(1− Yit) log (1− Λ (αi + θ′1X

∗
it + θ′WWit)) .

Panel Probit model corresponds to taking Λ to be the CDF Φ of Normal distribution.

Dynamic models are included, for example, one can include lagged outcomes Yi,t−1 as a

part of vector Wit.
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Example 2 Linear model with individual-specific slopes and intercepts

Yit = γi0 + β′i0X
∗
it + τ ′0Wit + Uit, E [Uit|X∗it,Wit] = 0.

Here θ0 = (τ 0, σ
2
Uit

) and αi0 ≡ (γi0, βi0). Then, Gaussian (quasi) MLE estimator corre-

sponds to

` (Xit, Sit, τ , σU , γi, βi) = − 1

2σ2
U

(γi + β′iXit + τ ′Wit − Yit)
2 − 1

2
ln (σ2

U) .

Example 3 Panel nonlinear least-squares model

E [Yit|X∗it, αi] = m (X∗it,Wit, θ, αi)

can be estimated using

` (Xit, Sit, τ , σU , γi, βi) = − (m (Xit,Wit, θ, αi)− Yit)2 .

To simplify the exposition, in this section we assume that Xit and αi are scalar,

although the results naturally extend to multivariate Xit and αi.

We assume that

Xit = X∗it + εit, where (3)

E [εit|X∗it, Sit] = 0, E [ε2
it|X∗it, Sit] = σ2. (4)

The above equations have the spirit of the “classical” measurement error assumption,

but are weaker, since they do not rule out dependence between εit and (X∗it, Sit).

Under some regularity conditions,
√
NT

(
θ̂

m
− θ0 − Bσ,N,T

)
→d N (0,Ω) , (5)

where Bσ,N,T is the asymptotic bias of θ̂
m

. To present the expressions for the asymptotic

bias of θ̂
m

we need to introduce some additional notation. Let

uit (θ, α) ≡ ∇θ` (Xit, Sit, θ, α) , vit (θ, α) ≡ ∇αi` (Xit, Sit, θ, α) .

In this section we use superscripts denote partial derivatives with respect to parameters

θ and α, e.g., uαit (θ, αi) ≡ ∇αu (Xit, Sit, θ, αi). We omit the arguments when a function

is evaluated at (θ0, αi0), e.g., of uαit ≡ uαit (θ0, αi0). We put ∗ in the superscript to indicate

evaluating a function at X∗it rather than Xit, e.g., u∗αit ≡ ∇αu (X∗it, Sit, θ0, αi0). We use

subscripts x to denote derivatives with respect to x, e.g., uitx ≡ ∇xuit, uitxx ≡ ∇xxuit,
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and uitxxx ≡ ∇xxxuit. We also write u
(k)
itx to denote (∂k/∂xk)uit. Finally, we let Ei [·]

denote expectation with respect to the distribution of the i’th cross-section.

To present the expressions for the asymptotic bias of θ̂
m

we need to introduce some

additional notation. Let

uit (θ, α) ≡ ∂

∂θ
` (Xit, Sit, θ, α) , vit (θ, α) ≡ ∂

∂αi
` (Xit, Sit, θ, α) .

Let additional subscripts denote partial derivatives, e.g., uitθ (θ, α) = ∂uit (θ, α) /∂θ. Let

Ei [·] denote expectation w.r.t. the distribution of the i’th cross-section. Let

vit ≡ v∗it
(
θ, αi

)
, v∗αit ≡ ∇αivit

(
θ, αi

)
, v∗ααit ≡ ∇αiαivit

(
θ, αi

)
,

uit ≡ uit
(
θ, αi

)
, u∗αit ≡ ∇αiuit

(
θ, αi

)
, u∗ααit ≡ ∇αiαiuit

(
θ, αi

)
,

ψit ≡ −Ei [v∗αit ]−1 v∗it.

Assumption 1 σ2 = o
(
(NT )−ω

)
for some ω > 1/3 and E

[
|εit/σ|k

]
is bounded for all

k ≥ 1.

Assumption 2 For some constants δ > 0 and C,
∣∣ ∂k+l+m

∂θk∂αl∂xm
` (x, s, θ, α)

∣∣ ≤ C for all

θ ∈ B(θ0) (δ) and all α, x, s, and nonnegative integers k, l, m such that k+ l ≤ 5, m ≤ 3.

Condition that all moments of |εt/σ| are bounded can be relaxed. Note that we are

imposing assumptions on the true distribution of the data (X∗it, Sit). The nonstandard

asymptotic approximation with σ2 → 0 we employ only applies to the modelling of the

measurement error. Some of the results make use of the following standard Assumption.

Assumption 3 N/T → κ2 ∈ (0,∞) as N →∞, T →∞.

Proposition 4 Suppose Assumptions 3,1,2, and ?? hold. Then in equation (5)

Bσ,N,T = σ2Bme +
1

T
Binc +O

(
σ3 +

1

T 2
+
σ2

T

)
,

where

Bme ≡ H∗E
[
u∗αit βME,i +

1

2
u∗itxx

]
, (6)

Binc ≡ H∗E
[
u∗αit βINC,i + CLR,i [u

∗α
it , ψ

∗
it] +

1

2
u∗ααit VLR,i [ψ

∗
it]
]
, (7)

ψ∗it ≡ Q∗i v
∗
it, Q∗i ≡ −Ei [v∗αit ]−1 ,

βME,i ≡
1

2
Q∗iEi [v

∗
itxx] ,

βINC,i ≡ Q∗i

(
CLR,i [v

∗α
it , ψ

∗
it] +

1

2
Ei [v

∗αα
it ]VLR,i [ψ

∗
it]
)
.
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H∗ ≡ −
(
E
[
u∗θit − u∗αit · Ei

[
v∗θit
]

/Ei [v
∗α
it ]
])−1

. (8)

The bias of θ̂
m

consists of three parts: the measurement error bias σ2Bme, the inci-

dental parameter bias 1
T
Binc, and the higher order bias.

The measurement error bias can be decomposed into two parts. The first term in

equation (6) comes from the errors-in-variables bias βME,i in estimation of the fixed-

effects. The second term arises directly from the effect of the measurement error on the

uit, which is nonlinear in Xit.

The incidental parameter bias formula is the same as in HN04 and HK11. As HN04

explain, the incidental parameter bias has three sources. The first term in equation (7)

is due to the bias βINC,i of the nuisance parameters αi. The second term is due to the

parameters θ and αi being estimated from the same data. The third term is the usual

nonlinearity bias, due to the randomness in α̂i.

It is worth briefly discussing the higher order bias, which is O (σ3 + 1/T 2 + σ2/T ).

The first two terms are the next order terms of measurement error and incidental pa-

rameter biases, respectively. Term O (σ2/T ) represents the effect of measurement error

on the first order incidental parameter bias.

To illustrate these points, consider a simplified version of Example 2:

Yit = αi0X
∗
it + Uit, E [Uit|X∗i ] = 0, θ0 ≡ E [U2

it] . (9)

Then the Gaussian (pseudo)-likelihood function is ENT [`it (θ, αi)], where

`it (θ, αi) ≡ log fit (θ, αi) = − 1

2θ
(αiXit − Yit)2 − 1

2
ln θ,

uit (θ, αi) =
1

2θ2

(
(αiXit − Yit)2 − θ

)
, vit (θ, αi) = −1

θ
(αiXit − Yit)Xit,

and the MLE estimators are

α̂i ≡ ET [XitYit] /ET [X2
it] and θ̂ ≡ ENET

[
(α̂iXit − Yit)2] .
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v∗αit = −X
∗2
it

θ0

, v∗ααit = 0, Q∗i =
θ0

Ei [X∗2it ]
, ψ∗it =

1

Ei [X∗2it ]
(Yit − αi0X∗it)X∗it,

u∗αit =
1

θ2
0

X∗it (αi0X
∗
it − Yit) , Ei [u

∗α
it ] = 0, u∗ααit =

1

θ2
0

X∗2it

u∗θit = − 1

θ3
0

(αi0X
∗
it − Yit)

2 +
1

2θ2
0

, H∗ = 2θ2
0, u∗itxx =

α2
i0

θ2
0

, hence

βME,i = − αi
Ei [X∗2it ]

Binc = −θ0, Bme = E [α2
i0] , i.e.,

√
NT

(
θ̂ −

{
θ0 −

1

T
θ0 + σ2E [α2

i0]
})
→d N (0,Ω`) .

Remark 1 In this example the incidental parameter bias and the measurement error

bias have the opposite signs. In such cases, an estimator that only corrects the incidental

parameter bias, but ignores the errors-in-variables bias, usually has larger bias than the

naive estimator that ignores the incidental parameter problem.

Remark 2 The incidental parameter bias Binc/T = −θ0/T is identical to the incidental

parameter bias in the Neyman and Scott (1948) model

Yit = αi + Uit, E [Uit] = 0, θ0 ≡ E [U2
it] . (10)

Remark 3 Since the model of equation (9) is very simple, one can directly calculate

higher order terms of the asymptotic bias of θ̂ to be

BT,σ = −θ0·
1

T
+σ2·

K/2∑
k=0

E

[
α2
i

(
− σ2

σ2
X∗it

)k]
+
σ2

T
·E
[
−α2

i

(
1

σ2
X∗it

+ 1

)]
+o

(
σ2

T

)
+O

(
σK+1 +

1

T 2

)
,

where we have assumed that E [X∗it] = 0 and K is even.

Remark 4 We can continue the MME expansion to a higher order and obtain the ex-

pression of the form θ = θ0+
∑K

k=2 σ
kB∗σ,k+O (σK+1). The leading terms in the expansion

of B remain B∗ + σ2

T
CB, so equation (??) becomes

√
NT

(
θ̂
m
− θ0 −

[
1

T
B∗ +

K∑
k=2

σkB∗σ,k +
σ2

T
CB +O

(
σK+1 +

σ3

T
+

1

T 2

)])
→d N

(
0,Ω∗HN04

)
.

Under what conditions can we ignore the bias correction σ2

T
CB of the incidental pa-

rameter bias? The remainder of order σK+1 can be ignored if we make an assumption
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that as σ2 = o
(
(NT )−1/(K+1)). Hence,

√
NT σ2

T
is negligible as long as 1

T
(NT )

1
2
− 1
K+1 is

bounded, i.e., N = O
(
T
K+3
K−1

)
. Thus, bias correcting the incidental parameter bias term

is not necessary as long as K ≤ 3. When K ≥ 4 would not be needed only if the con-

dition N = o (T 3) strengthened to N = O
(
T
K+3
K−1

)
. Intuitively, when T is small relative

to N , incidental parameter bias correction plays a more important role, and needs to be

corrected in the presence of larger measurement error. For example, if K = 4 one needs

to either assume that N/T 7/3 is bounded, or estimate the term σ2

T
CB and include it as a

part of the bias correction.

Remark 5 Few papers study large-T panel data settings allowing T = o (N) in the

asymptotic approximations; the majority of the literature develops asymptotic theory only

under the assumption N/T → κ2 ∈ (0,∞), since allowing T = o (N) substantially

complicates the theoretical analysis. Under this asymptotic approximation, term σ2

T
CB in

the above expressions can always be ignored. However, in practice T is often much smaller

than N , and hence the conclusion of the previous Remark has practical implications

regardless of the choice of the asymptotic framework.

To correct the incidental parameter bias, one can use a panel jackknife procedure.

For instance, following HN04 let θ̂ denote an estimator that uses full dataset, and define

θ̂(t) to be the estimator obtained applying the estimator to the dataset that excludes

observations from t’th time-period. NH04 show that estimator

θ̂J ≡ T θ̂ − (T − 1)
1

T

T∑
t=1

θ̂(t) (11)

removes the incidental parameter bias of order 1
T

in static models. For dynamic panels

the jackknife procedure of Dhaene and Jochmans (2015) can be used.

It is important to note that jackknifing does not affect the measurement error bias

σ2B∗σ. To see this, let us denote the bias of the estimator θ̂
m

that uses all T time periods

by

BT,σ ≡
1

T
B∗ +

K∑
k=2

σkB∗σ,k +
σ2

T
CB +O

(
σK+1 +

σ3

T
+

1

T 2

)
.

Then the bias of θ̂
m

J is approximately

TBT,σ − (T − 1)BT−1,σ =
K∑
k=2

σkB∗σ,k +O

(
σK+1 +

1 + σ2

T 2

)
.

Thus, jackknife is able to remove two sources of bias 1
T
B∗ but leaves the leading mea-
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surement error bias term untouched. An advantage of the jackknife bias correction is

that it and σ2

T
CB,

Let us illustrate the two sources of EIV bias of the fixed effect estimators of common

parameter θ0 in two very simple examples.

Example 4 “Textbook” model:

Yit = αi + θXit + Uit.

Here uxx = −2θ, vxx = 0, so there is no ”direct” errors-in-variables bias in α̂i, the

errors-in-variables bias of θ̂ comes from the bias in θ, with Bme = −θ0/σ
2
X∗, which is an

expression familiar from standard OLS regression without any incidental parameters.

Example 5 Mirror of the “textbook” model:

Yit = θ + αiXit + Uit

Here uxx = 0, vxx = −2αi, so the errors-in-variables bias of θ̂ is solely attributed to the

bias of α̂i, with Bme = −E [αiX
∗
it] /σ

2
X∗.

The key ingredient of the bias expressions above is the variance of the measurement

error σ2. If σ2 is known, or can be estimated from a validation dataset or repeated mea-

surements, the above expressions can be used to bias correct θ̂
m

to obtain asymptotically

unbiased estimators of θ0. However, such additional data allowing direct estimation of

σ2 is rarely available in practice. In the next section we develop an estimation approach

in which parameters θ, αi, and σ2 are jointly estimated by using lagged covariates as

instruments to handle the problem of measurement errors.

3 Estimation

3.1 Motivation

As pointed out by GH86, in panel data models, lagged values of mismeasured covariates

provide instrumental variables that can be used to address the errors-in-variables prob-

lem. To make use of such instruments, we need to set the problem in the more general

moment conditions framework.
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Consider the individual-specific moment conditions

Ei [g (X∗it, Sit, Zit, θ, αi)] = 0 if and only if (θ, αi) = (θ0, αi0) ∀i ∈ [N ] , (12)

where dg ≡ dim (g) ≥ dθ + dα, and the moment condition may potentially include a

vector of instruments Zit. For instance, in Example 1 one may take

g (Xit, Yit,Wit, Zit, θ, αi) = (Yit − Λ (θ1Xit + θ′WWit + αi))h (Xit,Wit, Zit, θ, αi) ,

where h (Xit,Wit, Zit, θ, αi) is a vector of functions of (Xit,Wit, Zit) that in general could

depend on (θ, αi). In particular, taking

h (Xit,Wit, Zit, θ, αi) =
Λ′ (θ1Xit + θ′WWit + αi)

(1− Λ (θ1Xit + θ′WWit + αi)) Λ (θ1Xit + θ′WWit + αi)

 Xit

Wit

1

 ,

corresponds to the MLE estimator.

When covariates are mismeasured, generally Ei [g (Xit, Sit, Zit, θ0, αi0)] 6= 0. To ad-

dress this problem it is usually easy to introduce additional moment conditions that make

use of the instrumental variables. For instance, in Example 1 the moment condition

Ei
[(
Yit − Λ

(
θ0,1X

∗
it + θ′0,WWit + αi0

))
Zit
]

= 0, (13)

where Zit = Xi,τ for any τ < t, or, more generally, Zit = ϕ (Xi,τ ) for some vector of

functions ϕ (·).
It is important to note that the expectation in equation (13) involves X∗it and not Xit.

Unless Λ is a linear function, the instrument itself does not resolve the problem of errors-

in-variables, and generally Ei
[(
Yit − Λ

(
θ0,1Xit + θ′0,WWit + αi0

))
Zit
]
6= 0. As pointed

out by Amemiya (1985), in nonlinear models, instrumental variables do not alleviate

errors-in-variables bias by themselves.

To handle the problem of measurement errors we make use of Assumption 1 and

consider the following expansion of the moment condition:

Ei [g (Xit, Sit, Zit, θ, αi)]

= Ei [g (X∗it + εit, Sit, Zit, θ, αi)]

= Ei [g (X∗it, Sit, Zit, θ, αi)] + Ei [εitgx (X∗it, Sit, Zit, θ, αi)]

+Ei

[1

2
ε2
itgxx (X∗it, Sit, Zit, θ, αi)

]
+O

(
Ei
[
|εit|3

])
= Ei [g (X∗it, Sit, Zit, θ, αi)] + 0 +

1

2
σ2Ei [gxx (X∗it, Sit, Zit, θ, αi)] +O (σ3) . (14)
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By Assumption 1, O (σ3) = o
(
(NT )−1/2) and is negligible. Evaluating the above at

(θ0, αi0) and using equation (12) we obtain

Ei [g (Xit, Sit, Zit, θ0, αi0)] =
1

2
σ2Ei [gxx (X∗it, Sit, Zit, θ0, αi0)] + o

(
(NT )−1/2) .

Since the expectation of the moment condition is not zero at the true parameters, the

estimator based on the moment conditions git is biased. One can show that the measure-

ment error induces bias of order σ2. In particular, if
√
NTσ2 →∞, like MLE, the GMM

estimators will not be
√
NT consistent.

Had we known the value of the second term on the last line of equation (14), we could

have corrected the moment condition:

Ei [g (Xit, Sit, Zit, θ, αi)]−
1

2
σ2Ei [gxx (X∗it, Sit, Zit, θ, αi)] = Ei [g (X∗it, Sit, Zit, θ, αi)]+o

(
(NT )−1/2) .

Above, on the right hand side we have the moment condition evaluated at X∗it, i.e., free

from the measurement error bias. Of course, the above correction is infeasible, because

we do not know σ2 or Ei [gxx (X∗it, Sit, Zit, θ, αi)], which depends on the unobserved X∗it.

As Evdokimov and Zeleneev (2016) point out, as long as function g is sufficiently smooth,

we can approximate the correction term by

1

2
σ2Ei [gxx (X∗it, Sit, Zit, θ, αi)] =

1

2
σ2Ei [gxx (Xit, Sit, Zit, θ, αi)] +O (σ4) .

We can estimate Ei [gxx (Xit, Sit, Zit, θ, αi)] by 1
T

∑T
t=1 gxx (Xit, Sit, Zit, θ, αi), so the only

unknown part of the correction is σ2.

We introduce an additional parameter γ ∈ R and the following corrected moment

conditions:

ψit (θ, αi, γ) ≡ git (θ, αi)− γgit,xx (θ, αi) ≡ g (Xit, Sit, Zit, θ, αi)− γgxx (Xit, Sit, Zit, θ, αi) .

(15)

Let γ0 ≡ σ2/2. Then

Ei [ψit (θ0, αi0, γ0)] = O (σ3) = o
(
(NT )−1/2) . (16)

The moment conditions ψit have zero mean (up to the negligible term) at the true param-

eter values, and hence can be used to obtain asymptotically unbiased estimators, since

we can estimate Ei [ψit (θ, αi, γ)] by ET [ψit (θ, αi, γ)].

Remark 6 If one assumes that εit has zero skewness (e.g., εit is symmetric), equa-

tion (16) holds with O (σ4) instead of O (σ3) on the right-hand side.
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Remark 7 The derivative gxx can be computed numerically, hence the corrected moment

conditions can be computed by an automatic “black-box” procedure without requiring any

additional programming from the researcher.

3.2 Implementation

Let ψi (θ, αi, γ) ≡ 1
T

∑T
t=1 ψit (θ, αi, γ) and let Ξ̂i be some some p.s.d. weighting matrices.

Consider the following estimator(
θ̂, α̂1, . . . , α̂N , γ̂

)
= argmin

(θ,α1,...,αN ,γ)∈Θ×AN×Γ

N∑
i=1

Q̂i (θ, αi, γ) , where (17)

Q̂i (θ, αi, γ) ≡ ψi (θ, αi, γ)′ Ξ̂iψi (θ, αi, γ) .

The properties of such GMM estimators have been analyzed by FL13, who show that the

estimators of common parameters are
√
NT consistent, but suffer from the incidental

parameter bias of order 1
T

. This bias is linked to the analysis of higher-order proper-

ties of GMM estimators by Newey and Smith (2004). This bias can be corrected by

either a jackknife procedure such as in equation (11), or by the analytical bias correction

developed by FL13.

We can take the weighting matrices Ξ̂i to be sample estimators of the (long-run)

variance-covariance matrices of ψit
(
θ̃, α̃i

)
evaluated at some preliminary parameter values(

θ̃, α̃i
)
. The (biased) m-estimator (1) can be used as preliminary parameter values for

estimation of Ξ̂i. One can also use an incidental parameter bias corrected version of this

estimator, e.g., jackknife bias corrected estimator.

One advantage that m-estimators (1) often have is possessing a globally convex crite-

rion function, which greatly simplifies solving the high dimensional optimization problem.

Bias corrected criterion functions usually do not have this property, so, in practice, it

is important to use good starting values in the optimization problem (17). For exam-

ple, the (biased) m-estimator (1) provide very good starting values for the optimization

problem (17). From the standpoint of numerical optimization, the speed and reliability

of numerical solvers of (17) can be greatly improved if one provides a routine computing

analytical gradient of the criterion function, and makes use of the sparsity of the Hes-

sian in this problem (note that even though the Hessian matrix has O (N2) elements,

the number of its nonzero elements grows linearly with N .) In Appendix ?? we provide

additional details on the computation of these estimators.
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Then, for any (θ, γ) and i, α̂i (θ, γ) solve

FOCαi : 0 = Ψiαi (θ, α̂i (θ, γ) , γ)′ Ξ̂iψi (θ, α̂i (θ, γ) , γ)

and
(
θ̂, γ̂
)

solve

FOCθ : 0 =
N∑
i=1

Ψiθ (θ, α̂i (θ, γ) , γ)′ Ξ̂iψi (θ, α̂i (θ, γ) , γ) ,

FOCγ : 0 =
N∑
i=1

Ψiγ (θ, α̂i (θ, γ) , γ)′ Ξ̂iψi (θ, α̂i (θ, γ) , γ)

Then

0 ≈
N∑
i=1

Ψiθ (θ0, α̂i (θ0) , γ0)′ Ξ̂i

{
ψi (θ0, α̂i (θ0) , γ0) + Ψiθ (θ0, α̂i (θ0) , γ0)

(
θ̂ − θ0

)}
,

√
NT

(
θ̂ − θ0

)
=

{
EN
[
Ψiθ (θ0, α̂i (θ0, γ0) , γ0)′ Ξ̂iΨiθ (θ0, α̂i (θ0, γ0) , γ0)

]}
×
√
NTEN

[
Ψiθ (θ0, α̂i (θ0, γ0) , γ0)′ Ξ̂iψi (θ0, α̂i (θ0, γ0) , γ0)

]
.

Here

ψi (θ0, α̂i (θ0, γ0) , γ0) ≈ ψi (θ0, αi0, γ0) + Ψiαi (θ0, αi0, γ0) (α̂i (θ0, γ0)− αi0)

+Ψiαiαi (θ0, αi0, γ0) (α̂i (θ0, γ0)− αi0)2 .

Under some regularity conditions (see Section 4) )
√
Tψi (θ0, α̂i (θ0, γ0) , γ0) =

√
Tψi (θ0, αi0, γ0) + T−1/2Q1i + T−1R2i,

where supi∈[N ] |R2i| = oP
(√

T
)
.

3.3 Larger Measurement Errors

When the measurement error variance are moderately large (relative to the sample size

and the degree of nonlinearity of the model), one may want to continue the Taylor

expansion of the moment condition (14) to a higher order, and then correct the moment

conditions similarly to equation (15). As Evdokimov and Zeleneev (2016) point out, a

naive application of this strategy does not work, and one needs to tweak the definition

of the corrected moment conditions ψit.

git = g∗it + εitg
∗x
it +

1

2
ε2
itg
∗xx
it +

1

6
ε3
itg
∗xxx
it +

1

24
ε4
itg
∗xxxx
it + ε5

itg̃
xxxxx
it
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Let κj ≡ 1
j!
E
[
εjit
]

for j = 2, 3, 4. By analogy with equation (15), one may have hoped

that the expectation of

ψ̃it ≡ git − κ2g
xx
it − κ3g

xxx
it − κ4g

xxxx
it (18)

is of order o (σ4). This turns out not to be the case, in fact

E
[
ψ̃it
]

= O (σ2) .

It turns out that the measurement error correction in the definition of ψ̃it is insufficient.

The crux is that we need to correct the correction terms in equation (18). The correction

term gxxit has the property that E [gxxit ] = E [g∗xxit ] + O (σ3), and hence itself needs to be

corrected. To estimate κ2E [g∗xxit ] one can take κ2E [gxxit ] − κ2
2E [gxxxxit ] = κ2E [g∗xxit ] +

O (σ5). Thus, the valid corrected moment condition is defined as

ψit (θ, αi, κ2, κ3, κ4) ≡ git (θ, αi)− κ2g
xx
it (θ, αi)− κ3g

xxx
it (θ, αi)− (κ4 − κ2

2) gxxxxit (θ, αi) .

Remark 8 We can consider a “reduced form” version of the moment condition

ψit (θ, αi, κ2, κ3, κ4), and estimate parameters θ, αi, γ1, γ2, γ3 using the moment condition

ψit (θ, αi, γ1, γ2, γ3) ≡ git (θ, αi)− γ1g
xx
it − γ2g

xxx
it − γ3g

xxxx
it .

This provides valid estimators of and θ0, αi0, and the moments {κj} can be deduced from

the estimated γ.

If one is interested in imposing basic restrictions on the moment relationships (e.g.,

κ2 > 0, κ2
2 ≤ κ4, etc), one needs to correctly map the reduced form parameters γ into the

moments of εit.

3.3.1 Alternative ways of addressing the incidental parameters problem

Instead of using jackknife, one could remove the incidental parameters bias analytically

computing the bias of ψit, estimating it, and then bias-correcting the moment condition

ψit. The formulas for bias correction are given in FL13, but are themselves rather in-

volved, so the estimation of the nuisance parameters entering the bias correction terms

may introduce additional finite sample bias.
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4 Large Sample Theory

The framework considered in this paper is the fixed effects GMM (FE-GMM) framework

of Fernández-Val and Lee (2013).

Assumption 1 (DGP)

(i) For each i, conditional on αi0, (X∗i , Si) ≡ {(X∗it, Sit)}Tt=1 is a stationary mix-

ing sequence with strong mixing coefficients ai(l) = supt supA∈Ait,D∈Dit+l |P(A ∩
D) − P(A)P(D)|, where Ait = σ(αi0, X

∗
it, Sit, X

∗
it−1, Sit−1, . . . ) and Di

t =

σ(αi0, X
∗
it, Sit, X

∗
it+1, Sit+1, . . . ), such that supi |ai(l)| 6 Cal for some 0 < a < 1

and C > 0;

(ii) {(X∗i , Si, αi0)}Ni=1 are iid across i;

(iii) N, T →∞ such that N/T → κ2 for some 0 < κ <∞;

(iv) the moment function g(·) satisfies E [g(X∗it, Sit, θ0, αi0)] = 0 for each i and t, where

E[·] denotes the expectation taken with respect to the distribution of (X∗it, Sit) con-

ditional on αi0.

Assumption 1 formally specifies the data generating process and is analogous to Con-

dition 1 in Fernández-Val and Lee (2013). Conditions (i) and (ii) require data to be

independent and identically distributed across cross-sectional dimension i and impose

stationarity and weak dependence over time series dimension t (conditional on the the

realization of the fixed effect). Condition (iii) is a standard asymptotic approximation

used to characterize the incidental parameter asymptotic bias in panels with both N and

T large. Condition (iv) says that, for each i and t, the moment conditions are satisfied

at the parameter of interest θ0 and the corresponded fixed effect αi0. Importantly, E[·]
denotes the expectation taken with respect to the distribution of (X∗it, Sit) conditional on

the fixed effect αi0 and therefore should be indexed by i or αi0. For brevity, we suppress

this indexing hereafter.

However, instead of {(X∗it, Sit)}
N,T
i,t=1, a researcher observes {(Xit, Rit)}N,Ti,t=1 where Xit =

X∗it + εit, where εit is the measurement error. As result, once evaluated at Xit instead of

X∗it, the moment conditions are no longer satisfied at θ0, i.e. E [g(Xit, Sit, θ0, αi0)] 6= 0.

Therefore, the FE-GMM estimators studied by Fernández-Val and Lee (2013) are biased

since they are based on invalid moments and should be corrected. To facilitate the

analysis of the asymptotic properties of the estimators we make the following assumption

on the behavior of the measurement error.
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Assumption 2 (MME) {εit}N,Ti,t=1 are iid across i and t and independent of

{X∗it, Sit}
N,T
i,t=1 with E [εit] = 0 and σ2 ≡ E [ε2

it] = o ((nT )−1/3). Suppose also that all

the higher moments of εit/σ exist and uniformly bounded.

On top of satisfying the classical measurement error requirements, Assumption 2

requires the variance of the measurement error to slowly shrink towards zero as the

sample size grows. A similar alternative asymptotic framework was first introduced

in Evdokimov and Zeleneev (2016) and proved to be a useful asymptotic approximation

which suggests a simple and effective way of treatment of measurement errors in nonlinear

models. Note that although the magnitude of the measurement error variance decreases

with the sample size, the measurement error still affects the asymptotic distributions of

the uncorrected estimators. Indeed, under Assumptions 1, 2 and weak smoothness of the

moment function g(·), E [g(Xit, Sit, θ0, αi0)] = O(σ2). Hence, if an estimator ignores that

X∗it is mismeasured, it suffers from the measurement error bias of order O(σ2). Therefore,

it will be asymptotically biased if
√
nTσ2 → C 6= 0 or even no longer

√
nT -consistent if√

nTσ2 →∞.

To account for the presence of the measurement error, as in Evdokimov and Zele-

neev (2016), we introduce the corrected moment function ψ(x, s, θ, α, γ) ≡ g(x, s, θ) −
γg

(2)
x (x, s, θ, α), where γ is an additional nuisance parameter and g

(k)
x (·) ≡ ∂kg(·)/∂xk.

This choice is motivated by the following lemma preceded by a short notational intro-

duction.

Let X be a convex set in R which includes the supports of X∗it and Xit (for every

sample size). Similarly, let S be a convex set in Rdim(Sit) which includes the support of

Sit.

Lemma 1 Suppose g
(k)
x (x, s, θ0, αi0) are uniformly bounded on X ×S for k ∈ {0, . . . , 3}.

Then, under Assumptions 1 and 2,

E [ψ(Xit, Sit, θ0, αi0, γ0)] = o
(
(nT )−1/2

)
,

where γ0 ≡ σ2/2.

Lemma 1 says that, unlike the original moment restrictions based on g(·), the cor-

rected moment restrictions based on ψ(·) are satisfied at the true structural parameter

θ0, the fixed effect αi0 for some value of the nuisance parameter γ = γ0 equal to the vari-

ance of the measurement error over two.3 Therefore, the modified moment conditions

3Although E [ψ(Xit, Sit, θ0, αi0, γ0)] is not exactly equal to zero, it is sufficiently small to ensure that
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are valid and can be relied on for estimation and doing asymptotically correct inference

on θ0 (provided that the incidental parameter biased is also removed).

Remark 1 On the top of Assumptions 1 and 2, Lemma 1 requires g(·) to be sufficiently

smooth. The boundedness requirement is for simplicity of exposition only and can be sub-

stantially weakened as in Evdokimov and Zeleneev (2016). Note that it is automatically

satisfied under continuity of g
(k)
x (·) and compactness of X and S (the latter can be the

case when X∗it, Sit, and εit have bounded supports).

In other words, once the moment function is corrected to account for the measurement

error, we are back in the framework of Fernández-Val and Lee (2013) with ψ(·) taking

place of g(·). Specifically, as in Fernández-Val and Lee (2013), we consider the following

fixed effects GMM (FE-GMM) estimator:4

(θ̂, {α̂i}Ni=1, γ̂) ≡ arg inf
{(θ′,α′i)′∈B}Ni=1,γ∈Γ

n∑
i=1

ψi(θ, αi, γ)′Ŵ−1
i ψi(θ, αi, γ),

where ψi(θ, αi, γ) ≡ T−1
∑T

t=1 ψ(Xit, Sit, θ, αi, γ) and {Ŵi}Ni=1 is a collection of weighting

matrices. Here the criterion function is expressed as the sum of the individual criterion

functions ψi(θ, αi, γ)′Ŵ−1
i ψi(θ, αi, γ) depending on the common parameters θ and γ and

the individual parameter αi. B and Γ are the optimization parameter spaces for the

original vector of parameters β ≡ (θ′, α′i) and the nuisance parameter γ respectively.

Since the suggested estimator is based on the measurement error corrected moments, we

refer to it as the moderate measurement error FE-GMM (MME-FE-GMM) estimator

hereafter.

The large sample properties of the FE-GMM estimators are studied by Fernández-Val

and Lee (2013). The following set of assumptions ensure that we can invoke the result

of that paper to characterize the asymptotic distribution of θ̂.

Assumption 3 (Parameter space) B and Γ are compact convex subsets of Rdθ+dα and

R respectively. For each i, βi0 ≡ (θ′0, α
′
i0)′ is in the interior and bounded away from the

boundary of B. Similarly, (for every sample size) γ0 is in the interior and bounded away

from the boundary of Γ.

Assumption 4 (Weighting matrices)

(nT )−1/2
∑n

i=1

∑T
t=1 ψ(Xit, Sit, θ0, αi0, γ0)

d→ N(0,Ω∗) for some symmetric positive definite matrix Ω∗,
so the asymptotic bias caused by the measurement error is removed.

4Fernández-Val and Lee (2013) call this estimator a one-step FE-GMM estimator.
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(i) sup16i6N

∣∣∣∣Ŵi −Wi

∣∣∣∣ = op(1) where {Wi}Ni=1 is a deterministic sequence of symmet-

ric positive definite matrices satisfying 0 < 1/C < λmin(Wi) 6 λmax(Wi) < C;

(ii) there exists ξi(x, s) uniformly bounded on X × S such that Ŵi = Wi +∑T
t=1 ξi(Xit, Sit)/T +RW

i /T , where E [ξi(Xit, Sit)] = 0 and maxi |RW
i | = op(T

1/2).

Assumption 3 is standard, it requires the parameter spaces to be compact (for consis-

tency) and rules out the parameters on the boundary problem (for asymptotic normality).

Assumption 4 governs the behavior of the weighting matrices. Condition (i) requires uni-

form consistency of {Ŵi}Ni=1 to the limiting weighting matrix sequence {Wi}Ni=1 with

eigenvalues uniformly bounded from below and above. Condition (ii) is a regularity

condition, it is similar to Condition 4 (ii) in Fernández-Val and Lee (2013).

Remark 2 Since the distribution of Xit drifts with the sample size, ξi(x, s) also has

to change to satisfy E [ξi(Xit, Sit)] = 0. To avoid this, an alternative way to formu-

late Condition (ii) is to require Ŵi = Ŵi = Wi +
∑T

t=1 ξi(X
∗
it, Sit)/T + RW

i /T with

E [ξi(X
∗
it, Sit))] = 0, which is also not restrictive.

Assumption 5 (Moment Functions) ∂d1+d2g
(k)
x (x, s, θ, α)/∂θd1∂αd2 are continuous

and (uniformly in i) bounded on X × S × B for k ∈ {0, . . . , 3} and 0 6 d1 + d2 6 5.

Assumption 5 requires a certain degree of smoothness of the moment function and

is needed for two purposes. The first purpose is the same as the one of Condition 4 (i)

in Fernández-Val and Lee (2013): it governs the behavior of the higher order expansions

needed to characterize the asymptotic distribution of the FE-GMM estimator. The

second purpose is to localize the effect of the measurement error, i.e. bound the reminders

associated with the measurement error. It helps to make sure that (a) after correction,

the moment conditions are valid (Lemma 1 applies since its requirement is weaker) and

(b) the limits of all needed expectations taken under the measures corresponding to the

error-prone variable Xit (and the other variables) are equal to the expectations taken

under the measure corresponding to the true Xit, so the asymptotic properties of the

estimators depend on the true distribution of mismeasured data only.

Remark 3 As in Remark 1, we want to point out that, in Assumption 5, boundedness is

imposed for the ease of exposition and, in principle, can be replaced by weaker conditions.

Instead one can require the dominance conditions as in Fernández-Val and Lee (2013)

and limit the measurement error impact as in Evdokimov and Zeleneev (2016). Again,

the boundedness requirement is automatically satisfied under continuity on X × S × B
and compactness of X and S (we already required compactness of the parameter space).
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Similarly to Fernández-Val and Lee (2013), we introduce the following objects:

Ψθi ≡ E [∂ψ(Xit, Sit, θ0, αi0, γ0)/∂θ]

Ψγi ≡ E [∂ψ(Xit, Sit, θ0, αi0, γ0)/∂γ] = −E
[
g(2)
x (Xit, Sit, θ0, αi0)

]
,

Ψ(θi,γi) ≡ [Ψθi ,Ψγi ],

Ψαi ≡ E [∂ψ(Xit, Sit, θ0, αi0, γ0)/∂α] ,

Pαi ≡ W−1
i −W−1

i Ψαi(Ψ
′
αi
W−1
i Ψαi)

−1Ψ′αiW
−1
i ,

J ≡ E
[
Ψ′(θi,γi)PαiΨ(θi,γi)

]
,

where E[·] denotes the expectation taken with respect to the distribution of αi0. Finally,

let Ωi denote the (conditional) long run variance of ψ(Xit, Sit, θ0, αi0, γ0). Specifically,

Ωi = Ω0i +
∞∑
j=1

(Ωji + Ω′ji),

Ωji = E [ψ(Xit, Sit, θ0, αi0, γ0)ψ(Xit−j, Sit−j, θ0, αi0, γ0)′] .

Assumption 6 (ID and regularity)

(i) For each η > 0,

lim inf
N,T→∞

inf
i

[
inf

(θ′,α′i)
′∈B,γ∈Γ:||(θ′,α′i,γ)′−(θ′0,α

′
i0,γ0)′||>η

||ψi(θ, αi, γ)||
]
> 0,

where ψi(θ, αi, γ) ≡ E [ψ(Xit, Sit, θ, αi, γ)];

(ii) λmin(Ψ′αiW
−1
i Ψαi) > C > 0 uniformly in i and λmin(J) > C > 0;

(iii) 0 < 1/C < λmin(Ωi) 6 λmax(Ωi) < C uniformly in i.

Assumption 6 is a collection identification and regularity conditions. Condition (i) is

a global identification condition. Note that, unlike in Fernández-Val and Lee (2013), the

distribution of (Xit, Sit) necessarily drifts and we need to use lim infN,T→∞ in from of infi

(Remark 4 below also addresses this point). Like Condition 2 (v) in Fernández-Val and

Lee (2013), it is needed to be uniform to establish uniform consistency of the estimators

of the individual parameters. Condition (ii) is a local identification condition which

allows to establish asymptotic normality of the estimators: the first part correspond to

the individual parameters {α̂i}Ni=1 and the second to the common parameters θ̂ and γ̂.
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Condition (iii) is a standard regularity condition imposed on the long run variance of the

moment conditions.

Remark 4 For simplicity of exposition, we stated Assumption 6 using objects of the

form fi ≡ E [f(Xit, Sit, θ0, αi0, γ0)] for generic function f(·). These expectations change

with the sample size because both the distribution of Xit and the value of γ0 = σ2/2 drift.

However, note that, under the moderate measurement error asymptotics, for a smooth

function f(x, s, θ, α, γ), fi → f ∗i ≡ E [f(X∗it, Sit, θ0, αi0, 0)] as N, T →∞. In other words,

once evaluating the expectations, Xit can be replaced by X∗it and γ0 can be replaced by

0 in the limit. Note that the limiting “star” object f ∗i does not depend on the features

of the measurement error distribution at all and is determined by the underlying statis-

tical model for (X∗it, Sit) only. As a result, Assumption 6 can be formulated using the

limiting “star” objects only. For example, in Condition (i) ψi(θ, αi, γ) can be replaced

by ψ∗i (θ, αi, γ) ≡ E [ψ(X∗it, Sit, θ, αi, γ)] (and, consequently, lim infN,T→∞ can be dropped).

In condition (ii), Ψαi and J can be replaced by Ψ∗αi ≡ E [∂ψ(X∗it, Sit, θ0, αi0, 0)/∂α] and

J∗ ≡ E[Ψ∗′(θi,γi)P
∗
αi

Ψ∗(θi,γi)], respectively, with Ψ∗(θi,γi) and P ∗αi defined in the same way as

the other “star” objects before. Similarly, since ψ(x, s, θ, α, 0) = g(x, s, θ, α), in Con-

dition (iii) Ωi can be replaced by Ω∗i , the long run variance of the original moments

g(X∗it, Sit, θ0, αi0). Therefore, Assumption 6 is, in fact, not related to the features of the

measurement error distribution at all: it can be equivalently formulated and verified in

terms of the original statistical model for (X∗it, Sit) only.

Essentially, Assumptions 1-6 allow to establish validity of the corrected moments and

to verify that Conditions 1-4 of Fernández-Val and Lee (2013) are satisfied with ψ(·)
taking place of the original moment function g(·). Therefore, applying Theorem 2 in

Fernández-Val and Lee (2013), we can characterize the asymptotic distribution of the

estimator of the common parameters ζ̂ ≡ (θ̂
′
, γ̂′)′:

Theorem 1 Under Assumptions 1-6,

(nT )1/2Ξ−1/2(ζ̂ − ζ0 −B/T )
d→ N(0, Idθ+1), (19)

where ζ0 ≡ (θ′0, γ
′
0)′, Ξ ≡ J−1V J−1, V ≡ E

[
Ψ′(θi,γi)PαiΩiPαiΨ(θi,γi)

]
, and the expression

for B is given in the Appendix.

According to Theorem 1, the estimator of the common parameters ζ̂ suffers from

the bias of the order 1/T which is typical in the large N and T panel literature. Since
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the estimator is based on the corrected moments, the measurement error part of the

bias does not appear in the asymptotic distribution, and the only source of the bias

left is the incidental parameter bias B/T . As usual, under N/T → κ2 asymptotics,

the asymptotic approximation of the distribution of (nT )1/2(ζ̂ − ζ0) is N(κB,Ξ), so the

estimator is asymptotically biased by κB and needed to be corrected in order to be a

base for asymptotically valid inference.

Remark 5 To characterize the distribution of the individual effects estimators {α̂i}Ni=1,

one can apply the result of Lemma 1 in Fernández-Val and Lee (2013) which requirements

are also satisfied under Assumptions 1-6.

Remark 6 As pointed in Remark 4, under the moderate measurement error asymptotics,

the objects, which control the asymptotic distribution of ζ̂, like Ξ and B can be replaced

their their limits, analogous “star” objects. Then, similarly to Assumption 6, the asymp-

totic distribution of ζ̂ in fact does not depend on the features of the measurement error

distribution and is controlled by the underlying statistical model for the correctly measured

data (X∗it, Sit) only. Therefore (19) can be alternatively represented as

(nT )1/2Ξ∗−1/2(ζ̂ − ζ0 −B∗/T )
d→ N(0, Idθ+1),

where Ξ∗ ≡ J∗−1V ∗J∗−1 and V ∗ ≡ E
[
Ψ∗
′

(θi,γi)
P ∗αiΩ

∗
iP
∗
αi

Ψ∗(θi,γi)
]
. The expression for B∗ is

also given in the appendix.

In order to make inference on the structural parameter θ0 (or a function of θ0) based

on the MME-FE-GMM estimator ζ̂, one just needs to correct for the incidental param-

eter bias B/T (for example, by jackknifing or analytically) and estimate the asymptotic

variance of the corrected estimator. In many large N and T panel settings, removing

the incidental parameter bias does not increase the asymptotic variance of the estima-

tor. For example, Fernández-Val and Lee (2013) propose three analytical bias correction

methods, which do not affect it. However, since dealing with the incidental parameter

bias is not the focus of the paper, we do not propose and study properties of any specific

bias reduction technique, but just provide an estimator of the asymptotic variance Ξ in

(19), which, as pointed before, in many standard settings is unaffected by the standard

incidental parameter bias correction methods. Specifically, one can compute Ξ̂ using the
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following formulas:

Ψ̂θi ≡ T−1

T∑
t=1

∂ψ(Xit, Sit, θ̂, α̂i, γ̂)/∂θ

Ψ̂γi ≡ T−1

T∑
t=1

∂ψ(Xit, Sit, θ̂, α̂i, γ̂)/∂γ = −T−1

T∑
t=1

g(2)
x (Xit, Sit, θ̂, α̂i),

Ψ̂(θi,γi) ≡ [Ψ̂θi , Ψ̂γi ],

Ψ̂αi ≡ T−1

T∑
t=1

∂ψ(Xit, Sit, θ̂, α̂i, γ̂)/∂α,

P̂αi ≡ W−1
i −W−1

i Ψ̂αi(Ψ̂
′
αi
W−1
i Ψ̂αi)

−1Ψ̂′αiW
−1
i ,

Ĵ ≡ N−1

N∑
i=1

Ψ̂′(θi,γi)P̂αiΨ̂(θi,γi),

V̂ ≡ N−1

N∑
i=1

Ψ̂′(θi,γi)P̂αiΩ̂iP̂αiΨ̂(θi,γi),

Ξ̂ ≡ Ĵ−1V̂ Ĵ−1,

where Ω̂i estimates Ωi, the long run variance of ψ(Xit, Sit, θ0, αi0, γ0).

Remark 7 The moderate measurement error asymptotic provides an alternative way of

estimating Ξ, which exploits the knowledge that γ0 = σ2/2→ 0. This implies that, in the

formulas provided above, γ̂ can be replaced by 0. Specifically, Ψ̂θ0 and Ψ̂αi can be replaced

by

Ψ̂0
θi
≡ T−1

T∑
t=1

∂ψ(Xit, Sit, θ̂, α̂i, 0)/∂θ = T−1

T∑
t=1

∂g(Xit, Sit, θ̂, α̂i)/∂θ,

Ψ̂0
αi
≡ T−1

T∑
t=1

∂ψ(Xit, Sit, θ̂, α̂i, 0)/∂α = T−1

T∑
t=1

∂g(Xit, Sit, θ̂, α̂i)/∂α,

respectively. Moreover, Ω̂i can be replaced by Ω̂0, which estimates the long-run variance of

ψ(Xit, Sit, θ0, αi0, 0) = g(Xit, Sit, θ0, αi0) (which is, as pointed in Remark 4, is equal to the

long run variance of g(X∗it, Sit, θ0, αi0) in the limit). In particular, if g(X∗it, Sit, θ0, αi0) is

a martingale difference sequence, then Ω∗i = E [g(X∗it, Sit, θ0, αi0)g(X∗it, Sit, θ0, αi0)′], and

one can estimate it by

Ω̂0
i = T−1

T∑
t=1

g(Xit, Sit, θ̂, α̂i)g(Xit, Sit, θ̂, α̂i)
′.
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5 Large Network Data Models
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A Proofs

A.1 Proofs of Propositions in Section 2

A.1.1 Proof of Proposition 4

1. For any θ let

α̂i (θ) ≡ argmax
αi

T∑
t=1

`it (θ, αi) .

Then θ̂` solves

0 = ENT
[
uit
(
θ̂`, α̂i

(
θ̂`
))]

= ENT [uit (θ0, α̂i (θ0))] + ENT
[
uθit
(
θ̃, α̂i

(
θ̃
))

+ uαit
(
θ̃, α̂i

(
θ̃
))
· ∇θα̂i

(
θ̃
)] (

θ̂` − θ0

)
,

and hence
√
NT

(
θ̂` − θ0

)
= −ENT

[
uθit
(
θ̃, α̂i

(
θ̃
))

+ uαit
(
θ̃, α̂i

(
θ̃
))
· ∇θα̂i

(
θ̃
)]−1√

NTENT [uit (θ0, α̂i (θ0))]

(A.1)
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2. Consider ENT [uit (θ0, α̂i (θ0))]. Since α̂i (θ0) solves

ET [vit (θ0, α̂i (θ0))] = 0,

we have

ENT [uit (θ0, α̂i (θ0))] = ENT [uit (θ0, αi0)] + EN [Ani] +Rn3,

Ani ≡
1

T

T∑
t=1

{
uαit (α̂i (θ0)− αi0) +

1

2
uαit (α̂i (θ0)− αi0)2

}
(A.2)

|Rn3| ≤ CEN
[
|α̂i (θ0)− αi0|3

]
.

Because of the measurement error, E [uit (θ0, αi0)] 6= 0, and

ENT [uit] = ENT [u∗it] + ENT [u∗itxεit] +
1

2
ENT [u∗itxxε

2
it] +OP (σ3)

= ENT [u∗it] +
1

2
σ2E [u∗itxx] + ENT [u∗itxεit] + oP

(
T−1−3δ

)
.

Moreover, we cannot make use of the existing results on the higher order expansions of

m-estimators, such as Rilstone et al. (1996) and Bao and Ullah (2007), because those

expansions are invalidated by the presence of measurement error. Instead, in Lemma ??

below, we show that

α̂i − α0 = ET [ψ∗it] + σ2βME,i +
1

T
βINC,i + ET [ζ it] + oP

(
T−1−3δ

)
,

where Eζ it = 0, Eζ2
it = O (σ2), ET [ζ it] = OP (T−1/2σ) = oP (T−5/6−δ). Hence,

Ani ≡ ET

[
uαit (α̂i (θ0)− αi0) +

1

2
uααit (α̂i (θ0)− αi0)2

]
= ET

[
u∗αit (α̂i (θ0)− αi0) +

1

2
u∗ααit (α̂i (θ0)− αi0)2

]
+ET

[
u∗αitxεit (α̂i (θ0)− αi0) +

1

2
u∗ααitx εit (α̂i (θ0)− αi0)2

]
+

1

2
ET

[
u∗αitxxε

2
it (α̂i (θ0)− αi0) +

1

2
u∗ααitxxε

2
it (α̂i (θ0)− αi0)2

]
+ oP

(
T−1−3δ

)
+ET [ρit] +RA

ni

= Ei [u
∗α
it ]ET [ψ∗it] +

1

T
CLR,i [u

∗α
it , ψ

∗
it] + Ei [u

∗α
it ]
( 1

T
βINC,i + σ2βME,i

)
+

1

2T
Ei [u

∗αα
it ]VLR,i [ψ

∗
it] + oP

(
T−1−3δ

)
+ ET [ρit] +RA

ni,

where ρit ≡ ρ (X∗it, εit, Sit) for some bounded function ρ, and Eρit = 0, Eρ2
it = o (1).
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Suppose maxi∈[N ] |RA
ni| = oP (T−1) and maxi∈[N ] |α̂i (θ0)− αi0|3 = oP (T−1). Then,

√
NT

(
ENTuit (θ0, α̂i (θ0))− BuT,σ + o

(
T−1−3δ

))
→d N (0, VLR, [u

∗
it + Ei [u

∗α
it ]ψ∗it]) ,

(A.3)

where

BuT,σ ≡ σ2E
[1

2
u∗itxx + u∗αit βME,i

]
+

1

T
E
[
u∗αit βINC,i + CLR,i [u

∗α
it , ψ

∗
it] +

1

2
u∗ααit VLR,i [ψ

∗
it]
]
.

(A.4)

3. Consider the first term on the right-hand side of equation (A.1). Since α̂i (θ) solves

ENT [vit (θ, α̂i (θ))] = 0, by the implicit function theorem,

∇θα̂i (θ) = −ET [vαit (θ, α̂i (θ))]
−1ET

[
vθit (θ, α̂i (θ))

]
.

Let H∗ ≡ − (E [u∗θit − u∗αit · Ei [v∗θit ] /Ei [v
∗α
it ] ])

−1
,Then

√
NT

(
θ̂` − θ0

)
=

H∗
√
NTENT [uit (θ0, α̂i (θ0))] + oP (1) ,and hence

√
NT

(
θ̂` − θ0 −H∗BuT,σ

)
→d N (0, H∗VLR, [u

∗
it + Ei [u

∗α
it ]ψ∗it]H

∗) .

4. To establish the above result formally one needs to show that maxi∈[N ] |RA
ni| = oP (T−1)

and maxi∈[N ] |α̂i (θ0)− αi0|3 = oP (T−1). We do not do this in this for the biased m-

estimators in this proposition. We do formally establish asymptotic normality of the

MME estimator in Section 3 that we recommend researchers use in practice. �

A.2 Proofs of Large Sample Theory Results

Proof. [Proof of Lemma 1] By expanding g(Xit, Sit, θ0, αi0) around X∗it and using Xit =

X∗it + εi, we get

g(Xit, Sit, θ0, αi0) =g(X∗it, Sit, θ0, αi0) + g(1)
x (X∗it, Sit, θ0, αi0)εit

+
1

2
g(2)
x (X∗it, Sit, θ0, αi0)ε2

it +
1

6
g(3)
x (X̃it, Sit, θ0, αi0)ε3

it,

where Xit lies between X∗it and Xit. Note that, by Assumption 2 and boundedness of

g
(3)
x (x, s, θ0, αi0), E

[
1
6
g

(3)
x (X̃it, Sit, θ0, αi0)ε3

it

]
exists and is of order E

[
|εit|3

]
= O(σ3) =

o((nT )−1/2). Therefore, using independence of εit of (X∗it, Sit),

E [g(Xit, Sit, θ0, αi0)] =
σ2

2
E
[
g(2)
x (X∗it, Sit, θ0, αi0)

]
+ o((nT )−1/2).
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Similarly,

E
[
g(2)
x (Xit, Sit, θ0, αi0)

]
= E

[
g(2)
x (X∗it, Sit, θ0, αi0)

]
+O(σ),

and, as a result,

E [ψ(Xit, Sit, θ0, αi0, γ0)] = E [g(Xit, Sit, θ0, αi0)]− σ2

2
E
[
g(2)
x (Xit, Sit, θ0, αi0)

]
= o((nT )−1/2) +O(σ3)

= o((nT )−1/2),

where we exploited O(σ3) = o((nT )−1/2) again.

Proof. [Proof of Theorem 1] The result of the theorem is obtained by an application

of Theorem 2 in Fernández-Val and Lee (2013) with ψ(·) in place of g(·). Therefore,

we need to verify that Conditions 1-4 of Fernández-Val and Lee (2013) are satisfied for

ψ(·) under Assumptions 1-6. Before proceeding with that, first, note that Lemma 1

establishes validity of the corrected moment condition.

Verifying Condition 1: Assumptions 1 and 2 guarantee that Condition 1 is satisfied.

Indeed, the parts (ii)-(iv) of Condition 1 are trivially satisfied and we just need to verify

that part (i), the mixing condition, is also satisfied. This follows from Assumption 1 (i)

and 2.

Verifying Condition 2: Parts (i) and (iv) of Condition 2 are ensured by Assumption 5.

Part (ii) follows from Assumption 3. Part (iii) is trivial. The first part of (v) follows

directly from Assumptions 4 (i). We also need to show that for each η > 0

lim inf
N,T→∞

inf
i

[
QW
i (θ0, αi0, γi0)− inf

(θ′,α′i)
′∈B,γ∈Γ:||(θ′,α′i,γ)′−(θ′0,α

′
i0,γ0)′||>η

QW
i (θ, α, γ)

]
> 0, (A.5)

where QW
i (θ, α, γ) ≡ −ψi(θ, α, γ)′Wiψi(θ, α, γ). To prove that it is enough to show

lim inf
N,T→∞

inf
i
QW
i (θ0, αi0, γi0)− lim sup

N,T→∞
sup
i

inf
(θ′,α′i)

′∈B,γ∈Γ:||(θ′,α′i,γ)′−(θ′0,α
′
i0,γ0)′||>η

QW
i (θ, α, γ) > 0.

(A.6)

Replicating the proof of Lemma 1 and making use of the boundedness of the

g
(3)
x (x, s, θ0, αi0) one can show that

sup
i
ψi(θ0, αi0, γ0) = sup

i
E [ψ(Xit, Sit, θ0, αi0, γ0)] = o((nT )−1/2),

Hence, using Assumption 4 (i), we conclude that lim infN,T→∞ infiQ
W
i (θ0, αi0, γ0) = 0.
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At the same time, using Assumptions 6 (i) and 4 (i), we obtain that for each η > 0

lim sup
N,T→∞

sup
i

inf
(θ′,α′i)

′∈B,γ∈Γ:||(θ′,α′i,γ)′−(θ′0,α
′
i0,γ0)′||>η

QW
i (θ, α, γ) < 0.

Therefore, we conclude that (A.6) and, consequently, (A.5) both hold. Note that, un-

like in Fernández-Val and Lee (2013), since the distribution of (Xit, Sit) drifts, we have

lim infN,T→∞ in front of infi.

Verifying Condition 3: Part (i) is implied by Assumption 3. Part (ii) follows from

Assumption 6 (ii).

Verifying Condition 4: Part (i) is implied by Assumption 5. Part (ii) follows from

Assumption 4 (ii).
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