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Abstract

Models with errors-in-variables (EIV) often employ instrumental variable approaches to re-
move the EIV bias. This paper points out that in such models the issue of nonstandard inference
can arise even when the instruments are strong. Moreover, this occurs at very important points
of parameter space; for instance, when the coefficient on the mismeasured regressor in a non-
linear regression is close to zero. The root of the problem is weak identification of the nuisance
parameters, such as the distribution of the measurement error or control variable. These pa-
rameters are weakly identified when the mismeasured variable has small effect on the outcomes.
As a result, the estimators of the parameters of interest generally are not asymptotically normal
and the standard tests and confidence sets can be invalid. We illustrate how this issue arises
in several estimation approaches. This complication can be particularly problematic when the
nuisance parameters are infinite-dimensional.

Making use of the specific structure of the EIV problem, the paper proposes simple ap-
proaches to conducting uniformly valid inference about the parameter of interest. The high-
level conditions are illustrated by a detailed analysis of a semiparametric approach to EIV in
the general moment condition settings.
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1 Introduction

Measurement errors are present in many datasets. Correspondingly, the problem of errors-in-
variables (EIV) has received a lot of attention in the econometrics literature. A variety of mea-
surement error robust (MER) estimation approaches aim at removing the EIV bias. Among these
approaches, the instrumental variables are the most common source of identification in practice.
The importance of having strong instruments is also well recognised; when instruments are weak,
even in large samples, the estimators may have non-gaussian distributions and the standard infer-
ence procedures generally fail.

This paper shows that for nonlinear models with EIV the issue of nonstandard inference arises
even if the instruments are strong. This issue arises when the dependent variable is only weakly
affected by the true mismeasured variables. This weak relationship then fails to provide the informa-
tion necessary to separate the effects of the measurement error from the structural unobservables.

To illustrate this, consider a simple nonlinear regression model, where Yi is the outcome, X∗i is
a covariate, and Zi is an instrument. Suppose X∗i is mismeasured, and we instead observe Xi:

Yi = ρ(θ01X
∗
i + θ02) + Ui, E[Ui|X∗i , Zi] = 0, (1.1)

Xi = X∗i + εi, E[εi] = 0,

where ρ(·) is known nonlinear regression function, and θ0 = (θ01, θ02)′ is the vector of unknown
parameters of interest. For illustration, suppose that in addition,

X∗i = π0Zi + Vi, Vi, εi, and Zi are mutually independent. (1.2)

Suppose the instruments are strong, i.e., |π0| is bounded away from zero. Notice that we can write

Xi = π0Zi + Vi + εi.

In order to remove the EIV bias in these settings, one needs to identify the distribution of εi or
Vi (equivalently, X∗i ). The effects of these variables can be separated because Yi depends on Vi

through X∗i , but is independent from εi. When θ01 = 0, it is no longer possible to separate the
impacts of Vi and εi.

A variety of MER estimators can be used to deal with the EIV bias in this example. Because
ρ(·) is a nonlinear function, these MER methods estimate some nuisance parameters γ0, such as
the distribution (or some of its features, e.g., moments) of Vi and/or εi.1 When θ01 = 0, these
nuisance parameters γ0 are not identified. When θ01 is close to zero, γ0 are weakly identified.

Section 2 illustrates how the issue of nonstandard inference manifests itself in several approaches
to estimation of nonlinear models with EIV. The problem arises even in parametric models esti-
mated by the Maximum Likelihood Estimator. When the nuisance parameters γ0 are weakly or
not identified, the estimators of the parameters of interest θ0 are not approximately normally dis-

1Taken together, conditions (1.2) are excessively restrictive, so different MER approaches relax at least some of
them. Different approaches involve estimation of different nuisance parameters. It is convenient to denote these
nuisance parameters by γ0, although the meaning and dimensionality of γ0 will depend on the specific estimation
method.
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tributed and may be inconsistent, and the standard inference procedures are generally invalid.2,3

This problem of nonstandard inference is not limited to the nonlinear regression models. For
general models, we will use θ01 to denote the part of the vector of parameters θ0 that controls
identification of γ0. The remaining components of θ0 are denoted by θ02. Let us denote the full set
of parameters by β0 ≡ (θ0, γ0).

Weak identification of the nuisance parameters is particularly problematic when the nuisance
parameter γ0 is infinite-dimensional. In this case, the derivations of the asymptotic properties of
the estimators θ̂ usually rely on the condition that the nonparametric estimator of γ0 converges at
a rate faster than n−1/4. However, the latter condition is violated unless ‖θ01‖ is sufficiently large.

We now turn to the constructive contributions of the paper. We leverage the particular structure
of the EIV problem, which allows us to develop simple uniformly valid inference methods. These
methods can be used together with any MER estimator that satisfies certain conditions on its
behavior near θ01 = 0. Importantly, we show that in these settings it is possible to avoid the more
complicated methods of inference that are used in other settings with weakly identified nuisance
parameters. Then, we provide a specific uniformly valid approach to estimation and inference in
general moment condition problems with EIV.

The EIV problem has a particular structure that we exploit. Note that, on the one hand, when
θ01 ≈ 0, the nuisance parameter γ0 is weakly identified. On the other hand, the EIV bias (and the
corresponding EIV bias correction) in this case is small, because it is typically proportional to θ01.

First, we show that estimators similar to Non-Linear Instrumental Variables (NLIV) estimator
in the nonlinear regression settings, have a “small bias” property when θ01 is small.4 The idea is
that for sufficiently small θ01 the model is approximately linear in θ01Xi ≈ 0, so the instrumental
variable regression addresses the EIV problem. As a result, we show that the NLIV-type estimators
are asymptotically normal and unbiased as long as θ01 = o(n−1/4).5

At the same time, when θ01 is “sufficiently far” from zero, the MER approaches work as predicted
by the “standard” asymptotic theory. For example, when the dimension of the nuisance parameter
γ0 is finite, some of the MER estimators can be shown to satisfy the assumptions of the general
inference framework of Andrews and Cheng (2012, 2013, 2014) (henceforth AC12, AC13, and AC14).
AC12 show that for such models, estimators β̂ have asymptotically normal distribution, and the
standard tests about them are valid, as long as

√
n ‖θ01‖ → ∞. The latter condition ensures

that the amount of information about γ0 increases with the sample size, so γ0 can be consistently
estimated. When the condition fails, γ̂ is inconsistent, and the distribution of θ̂ is complicated
(and depends on γ0). To conduct uniformly valid inference about θ0, AC12 provide procedures to

2Throughout the paper, we assume the that the instruments are strong. More generally, for any MER approach,
we focus on the settings in which the approach provides asymptotically normal and

√
n-consistent estimators of θ0

when ‖θ01‖ is bounded away from zero.
3Weak identification of γ0 also complicates estimation and inference about average partial effects and other coun-

terfactuals that involve expectations with respect to the distribution of X∗. Estimation of such quantities usually
requires an explicit correction of the EIV bias, with the correction terms depending on γ0.

4Even though NLIV estimator is well known to generally not be invalid in the EIV problem, i.e., when θ01 is not
“small”; e.g., see Amemiya (1985).

5In contrast, naive MLE and NLLS estimators are asymptotically unbiased only if θ01 = o(n−1/2).
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numerically calculate the critical values for the standard test statistics. Confidence sets can then
be constructed by the inversion of the tests.

Then, a test TMER based on the MER approach can be combined with a NLIV-based test TNLIV

to provide inference that is uniformly valid for all values of θ01. One simple test is the “Robust”
test that rejects the null hypothesis only if both TMER and TNLIV reject it. This is a simple standard
way of constructing a uniformly valid test, but such tests are conservative. The key for this and
the following approaches to inference is that the validity regions of the MER and NLIV-based tests
overlap.

We also provide more powerful “hybrid” tests, which switch between TMER and TNLIV depending
on the estimated strength of identification of γ0. For some MER approaches, it can be shown that
θ̂ is a uniformly

√
n-consistent estimator of θ0 for all θ01.6 In such cases, we propose a hybrid test

that coincides with TMER when θ01 is “sufficiently large”, with TNLIV when θ01 is near zero, and
smoothly links the two tests for the intermediate values of θ01. Moreover, we construct a hybrid
estimator that is uniformly asymptotically normal and unbiased. This is an exceptional situation,
made possible by the availability of the NLIV-type estimators in the EIV settings. For example,
no such uniformly asymptotically normal estimators and hybrid tests described above appear to be
available for the general class of problems considered by AC12.

When the nuisance parameter γ0 is infinite-dimensional the problem can be very complicated.
(Semi-)Nonparametric EIV settings usually correspond to ill-posed inverse problems. Thus, we
are dealing with a weakly identified infinite-dimensional nuisance parameter in an ill-posed inverse
problem. Little is known about the properties of estimators in such problems. It is tempting to hope
that the inference approaches, proven to work when the dimension of γ0 is finite, will remain valid if
the infinite-dimensional γ0 is estimated using, e.g., a finite-dimensional sieve (series) approximation,
as long as the sieve dimension grows sufficiently slowly with the sample size. However, one has to
be cautious about this.

Next, we provide a uniformly valid estimation and inference approach for the general moment
condition models with EIV. We show that the approach of Evdokimov and Zeleneev (2016), in a
combination with the hybrid tests, provides uniformly valid approach to inference about parameters
θ0 and the marginal effects. We also show that their estimator remains

√
n-consistent uniformly

over all values of θ01, i.e., regardless of the identifiability of the nuisance parameters. We also verify
the higher-level conditions in the example of nonlinear regression.

The issue of nonstandard inference, which this paper points out, is not limited to EIV models
identified using instrumental variables. More generally, this issue is likely to arise when (i) the
approach to EIV involves explicit estimation of some nuisance parameters γ0, and (ii) estimation
of these nuisance parameters relies on the effect of X∗i on other variables, e.g., outcomes Yi in the
nonlinear regression. For instance, some estimators that rely on non-linearity or non-normality for
identification can suffer from weak identification of γ0.

6This is possible, because smaller values of θ01 reduce the amount of information about γ0, but at the same time,
for some MER approaches, reduce the impact of the estimation error γ̂ − γ0 on the estimator θ̂.
In particular, MER estimators that satisfy the assumptions of AC12 are

√
n-consistent.
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On the other hand, this issue of nonstandard inference does not arise in linear models esti-
mated by IV regression, since one does not estimate the distribution of any unobservables in this
case. This issue also does not arise when the nuisance parameter γ0, e.g., the distribution of the
measurement error, is identified using auxiliary information, such as repeated measurements (e.g.,
Section 2 of Hausman, Ichimura, Newey, and Powell (1991),7 Li (2002), Schennach (2004)) or aux-
iliary/validation data (e.g., Chen, Hong, and Tamer (2005)). In these cases one does not rely on
the effect of X∗i on Yi to identify the nuisance parameter γ0.

Chen, Hong, and Nekipelov (2011) and Schennach (2013, 2016) provide excellent overviews of
the MER approaches in nonlinear models.

Measurement Error Robust approaches that use instrumental variables for identification include
Hausman et al. (1991); Hausman, Newey, and Powell (1995); Newey (2001); Schennach (2007); Hu
and Schennach (2008); Wang and Hsiao (2011); Evdokimov and Zeleneev (2016). It is important to
note that the regularity conditions in all of these papers do implicitly rule out the case of θ01 = 0,
e.g., because some rank conditions fail when θ01 = 0. Our paper brings attention to the importance
of complementing these analyses with a uniformly valid asymptotic analyses that allow for θ01 to
be small.

When the dimension of the nuisance parameter γ0 is finite, the settings fall into the general
class of problems of inference in models with weakly identified parameters. Stock and Wright
(2000), Kleibergen (2005), Guggenberger and Smith (2005), Guggenberger, Ramalho, and Smith
(2012), Andrews and Mikusheva (2016), Andrews (2016) develop tools for uniformly valid inference
on the entire vector of parameters β0 in the general GMM setting. The approaches proposed in
these papers allow for concentrating out strongly identified nuisance parameters. However, when
the nuisance parameter γ0 is weakly identified, one needs to combine the tests on the full vector
β0 with the projection methods (Dufour, 1989; Dufour and Jasiak, 2001; Dufour and Taamouti,
2005) in order to test hypotheses about and construct confidence sets for the parameter of interest
θ0. Such projection based tests are known to be asymptotically conservative and not efficient
under strong identification. Another strand of the literature utilizes the Bonferroni correction
method to construct uniformly valid subvector inference procedures when the nuisance parameter
is (potentially) weakly identified (see, for example, Chaudhuri and Zivot, 2011; McCloskey, 2017;
Andrews, 2017 among others). Notably, refining the approach of Chaudhuri and Zivot (2011),
Andrews (2017) constructs identification robust subvector tests and confidence sets, which are
asymptotically non-conservative and efficient under strong identification. Unfortunately, in some
settings, these procedures may be difficult to implement and the high-level assumptions may be
hard to verify. Another related stream of the literature featuring AC12, AC13, AC14, Cheng
(2015), Cox (2017), Han and McCloskey (2019) exploit the knowledge of which parameters are
(potentially) weakly identified and which parameters control their strength of identification. In

7Hausman et al. (1991) includes two approaches to the EIV. In Section 2 they consider identification and estimation
using repeated measurements. In Section 3 they consider instrumental variables strategy. As a result, the estimator
from Section 2 does not suffer from nonstandard inference problem, but the estimator from Section 3 does.
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this respect, their frameworks are similar to the EIV setting, in which θ01 controls the strength of
identification of γ0. The inference procedures developed in these papers are asymptotically non-
conservative and efficient under strong identification but their implementation involves computation
of the least favorable critical values, which can be difficult especially when γ0 is not a scalar. Other
recent work on optimal testing with nuisance parameters also includes Elliott, Müller, and Watson
(2015), Montiel Olea (2019), and Moreira and Moreira (2013), who construct tests maximizing
weighted average power.

Little is known about inference in semiparametric models with weakly identified infinite-dimensional
nuisance parameters. The approach of Newey (1994), who establishes asymptotic normality of the
finite-dimensional parameters, cannot be used. Formally, the approach cannot be used because the
estimators of the nuisance parameters do not converge at a rate faster than n−1/4. More impor-
tantly, the estimators θ̂ have non-gaussian distributions when θ01 ≈ 0, and hence one cannot hope
to fix the problem by finding some alternative regularity conditions for Newey (1994). Uniformly
valid inference about θ0 and its components could possibly be provided by the projection method
applied to a semi-nonparametric analog of the S-test, following Chen and Pouzo (2015) and Cher-
nozhukov, Newey, and Santos (2015). However, this approach is likely to yield very conservative
inferences.

The rest of the paper is organized as follows. Section 2 illustrates the problem of weak identifica-
tion of the nuisance parameters for several MER estimators. Section 3.1 shows that the NLIV-type
estimators have a low-bias property that other naive estimators do not have. Section 3.2 intro-
duces several simple approaches to inference that are uniformly valid regardless of the strength
of identification of the nuisance parameter γ0. Section 4.1 introduces the Moderate Measurement
Error estimator (MME) for general moment condition models with EIV. Section 4.2 provides a
simple exposition of how the properties of such estimators change depending on the magnitude of
√
n‖θ01‖. Section 5 presents Monte Carlo experiments that illustrate the properties of the pro-

posed inference procedures. Section 6 develops the large sample properties of the MME estimator.
Section 7 formally establishes uniform validity of the proposed inference approaches. All proofs are
collected in the Appendix.

Notation: All vectors are columns. For some generic parameter vector β and a vector valued
function a(x, s, β) and , let ai(β) ≡ a(Xi, Si, β), a(β) ≡ n−1∑n

i=1 ai(β), a(β) ≡ E[ai(β)]. Let
Ω̂aa (β) ≡ n−1∑n

i=1 ai(β)ai(β)′ and Ωaa (β) ≡ E[ai(β)ai(β)′]. For the true value of the parameter
β0n we often write a ≡ a(β0n), a ≡ a(β0n), Ω̂aa ≡ Ω̂aa (β0n), Ωaa ≡ Ωaa (β0n). Let λmin(M) and
λmax(M) stand for the smallest and largest eigenvalues of a symmetric matrix M .
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2 Illustration of the Issue

In this section we illustrate how the problem of weak identification of the nuisance parameters
affects the properties of several EIV-robust estimators. To keep this section concise, we provide
only provide brief descriptions of the estimators, leaving more detailed descriptions to later sections
and the Appendix.

2.1 Semiparametric Control Variable Approach

Hausman et al. (1991); Newey (2001); Schennach (2007); Wang and Hsiao (2011) develop estima-
tors for the NLR model. To simplify the presentation, we consider the model without additional
covariates Wi. The papers make use the following assumptions:

Yi = ρ (X∗i , θ0) + Ui, E [Ui|Zi, Vi] = 0, (2.1)

Xi = X∗i + εi, E [εi|Zi, Vi, Ui] = 0, (2.2)

X∗i = π′Zi + Vi, Vi ⊥ Zi. (2.3)

Only (Yi, Xi,Z ′i) are observed. Equations (2.1) and (2.2) are exogeneity conditions on Ui and εi.
Note that the assumption on the measurement error εi is relatively weak, for example, it allows εi
to be conditionally heteroskedastic. Condition (2.3) is restrictive, as it requires additivity and full
independence of Vi. The location of Vi needs to be normalized, so one assumes E [Vi] = 0. These
assumptions do not impose any parametric restrictions on the distributions of the unobservables.

Under these assumptions, coefficients π can be estimated by the linear regression of Xi on Zi.
For simplicity of exposition, let us view π as known and define Zi ≡ π′Zi. Then, we can write

X∗i = Zi + Vi, E [Vi] = 0.

The analysis in this framework was pioneered by the seminal papers of Hausman et al. (1991) and
Newey (2001). Our exposition follows Newey (2001), who observes that the following conditional
moment restrictions hold:

E
[(

Yi

YiXi

)∣∣∣∣∣Zi = z

]
= E

[(
ρ (Zi + Vi, θ0) + Ui

(ρ (Zi + Vi, θ0) + Ui) (Zi + Vi + εi)

)∣∣∣∣∣Zi = z

]

=
∫
ρ (z + v, θ0)

(
1

z + v

)
fV (v) dv, (2.4)

where fV (·) is the (unknown) density of Vi. Here, the nuisance parameter γ0 ≡ fV (·) is infinite-
dimensional.

Hausman et al. (1991) consider polynomial specifications of function ρ (x; θ), in which case the
right-hand side of equation (2.4) simplifies and becomes a set of equations that contain θ0 and the
nuisance parameters γ0 ≡

(
E [V 2

i ] , . . . ,E
[
V
ppoly+1
i

])′
, where ppoly is the order of the polynomial

ρ (x; θ). Hausman et al. (1991) propose jointly estimating θ0 and γ0. To illustrate, consider the

7



quadratic model: ρ (x, θ0) = θ01x
2 + θ02,1x+ θ02,2. Then, equation (2.4) becomes

E
[(

Yi

YiXi

)∣∣∣∣∣Zi = z

]
= θ01

(
z2 + E [V 2]

z3 + E [V 3] + 3zE [V 2]

)
+ θ02,1

(
z

z2 + E [V 2]

)
+ θ02,2

(
1
z

)
.

These conditional moment restrictions can be used to estimate (θ0, γ0).
Note that when θ01 = 0 the nuisance parameter E [V 3

i ] cannot be identified, and hence an
estimator that attempts to jointly estimate (θ0, γ0) may have nonstandard properties.

Newey (2001) suggests that the conditional moment restrictions (2.4) can identify θ0 for general
nonlinear functional forms of ρ.8 Newey (2001) proposes estimating θ0 jointly with the infinite
dimensional nuisance parameter fV using a series estimator of fV .

Suppose the regression function has the structure ρ (x∗, θ0) ≡ ρ (θ01x
∗, θ02), e.g., as in the GLM

model of equation (1.1). When θ01 = 0, the moment conditions (2.4) become

E
[(

Yi

YiXi

)∣∣∣∣∣Zi = z

]∣∣∣∣∣
θ01=0

=
∫
ρ (0, θ02)

(
1

z + v

)
fV (v) dv = ρ (0, θ02)

(
1
z

)
.

The right-hand side of the equation does not depend on fV , i.e., the nuisance parameter fV is not
identified. Let us illustrate the properties of these estimators in finite samples.

Example 1 (Logit MC). Consider the following design for Monte Carlo experiments. The model
is logit binary choice:

P (Yi = 1|X∗i ) = ρ (θ01X
∗
i + θ02) , ρ (·) ≡ 1 /(1 + exp(−·)) (2.5)

X∗i = Zi + Vi, Xi = X∗i + εi, (2.6)

(Zi, Vi, εi)′ ∼ N
(
(0, 0, 0)′ , Diag

(
σ2
Z , σ

2
V 0, σ

2
ε0
))
. (2.7)

We take (θ02, σ
2
Z , σ

2
V 0, σ

2
ε0) = (1, 1, 1, 1) and n = 1000. In the regression of Xi on Zi the average

value of the F -statistic is 500.

To sidestep the issues of choosing the number of approximating series terms in nonparametric
estimation of fV , we consider a simplified version of Newey (2001) estimator. We assume that it is
known that Vi ∼ N (0, σ2

V 0), so that fV is known up to the scalar parameter σV 0. Then, (θ′, σV )′

are estimated using 2-step GMM with the following moment conditions:

ψi (θ, σV ) ≡
(∫

ρ (θ1 (Zi + σV η) + θ2) (Zi + σV η)φ (η) dη − YiXi∫
ρ (θ1 (Zi + σV η) + θ2)φ (v) dη − Yi

)
⊗


1
Zi

Z2
i

Z3
i

 , (2.8)

where φ (η) ≡ (2π)−1/2 exp (η2/2), and we treat Zi as known for brevity. In addition, Newey (2001)
uses simulation to compute the integrals. To avoid discussing the impact of simulation, in this
simple model we instead use quadratures to compute the integral.

8Schennach (2007) studies nonparametric identification of this model.
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Figure 1 presents histograms of the distribution of θ̂ and σ̂V for θ01 ∈ {1, 0.05, 0.0}. When
θ01 is large, the estimator θ̂ performs as predicted by the standard asymptotic theory: it has
approximately normal distribution centered around the true value of the parameter. When θ01

is small, σV is not identified and θ̂ does not have a normal distribution. Note however that the
distribution of θ̂ is still concentrated around the true parameter value.

Next, consider the quadratic model. In the simulations, we take (θ02,1, θ02,2, σ
2
U , σ

2
ε0, σ

2
Z) =

(0, 0, 1, 1, 1), n = 1000, and consider the estimator of Hausman et al. (1991). Figure 2 presents the
results. The results are qualitatively similar to the Logit model estimator.

Remark 1. Since Hausman et al. (1991) consider only polynomial specifications of ρ (·), their
assumptions only require the relevant implications of the conditions (2.1)-(2.3) for the polynomial
settings.
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Figure 1: Logit Model estimated using Newey (2001) estimator.
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Figure 2: Polynomial Model.

2.2 Moderate Measurement Error Approach

Consider the Moderate Measurement Error (MME) approach of Evdokimov and Zeleneev (2016).
We describe this approach in detail in Section 4. For now, let us note that MME approach assumes
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that the measurement error εi has features of classical measurement error in that E [εki |X∗i ] = E [εki ]
for k = 2, . . . ,K, for some K ≥ 2, and E [εi|X∗i ] = 0. Also, it is assumed that the finite sample
properties of the problem are approximated by viewing the magnitudes of E

[
|εi|k

]
as moderate or

small, relative to the sample size. The latter condition captures the situations where researchers
expect the magnitude of the EIV bias to be comparable to the magnitude of the standard error
(as opposed to the standard approach approach to measurement errors, which implies that in large
samples the standard errors are negligible compared to the EIV bias). The MME estimator is then
able to remove the EIV bias in the general moment conditions settings, including the nonlinear
regression models. For the MME estimator, the nuisance parameters γ0 are, essentially, the first
few moments of the measurement error E [ε2

i ] , . . . ,E [εKi ], e.g., K = 2 or K = 4.
Note that the assumptions of the MME approach are substantially different from those in the

previous section, aside from both methods assuming that E [εi|X∗i ] = 0. Newey (2001) estimates
the distribution of Vi (which requires additivity and independence of Vi), but does not impose
any restrictions on the higher moments of εi. For example, the variance of the measurement error
can depend on X∗i . MME approach estimates moments of εi (which requires conditional moments
of εi to not depend on X∗i ), but does not restrict or estimate the relationship between X∗i and
Vi, allowing X∗i = h (Zi, Vi) for a general unknown function h and multivariate unobserved Vi.
This in particular implies that the nuisance parameters γ0 for the two approaches are conceptually
different.

When X∗i does not affect the outcomes Yi, the moments E [εki ] cannot be identified. Figure 2
presents the distribution of the MME estimator θ̂ (with K = 4) in the Logit Monte Carlo design
of the previous section. The distributions of θ̂1 are qualitatively similar to those in Section 2.1,
despite the differences between the estimation approaches.
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Figure 3: Logit Model estimated using MME Estimator.
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2.3 MLE

Finally, to illustrate that the issue is not limited to semiparametric models, we consider MLE
estimation of the linear regression model with gaussian structural and measurement errors:

Yi = θ01X
∗
i + Ui,

Xi = X∗i + εi,

X∗i = Zi + Vi;
where


Ui

Vi

εi

Zi

 ∼ N



0
0
0
0

 ,

σ2
U0 0 0 0
0 σ2

V 0 0 0
0 0 σ2

ε0 0
0 0 0 1



 .

We take σU0 = σV 0 = σε0 = 1, n = 1000, and estimate parameters (θ01, σU0, σV 0, σε0)′ by MLE.
Here, the nuisance parameter is γ0 = (σ2

V 0, σ
2
ε0)′. Even though the sum σ2

V 0 + σ2
ε0 = V [Xi − Zi] is

always identified, σV 0 and σε0 are not separately identified when θ01 = 0.
The results of the Monte Carlo experiment are presented in Figure 4.
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Figure 4: Linear Gaussian MLE

3 Simple Solutions

In Section 3.1 we consider the properties of “naive” or “uncorrected” estimators, such as NLLS,
ML, GMM, and NLIV estimators. We focus on the case of θ01n near zero. In this case, the impact
of the measurement error and the EIV bias are shown to be small, although generally non-ignorable.
Importantly, it turns out that NLIV(-type) estimators have much smaller biases than NLLS and
MLE estimators when |θ01n| is small. As a result, NLIV-type estimators are asymptotically unbiased
for a wider range of values of θ01n near zero.

On the other hand, when |θ01n| is not too small, the usual MER estimators and inference
methods may be expected to work in accordance with the existing pointwise asymptotic theory
results. If the regions of validity of the NLIV-type and the MER methods overlap, the two methods
can be linked to construct tests that are valid uniformly for all values of θ01n. We provide several
such approaches in Section 3.2.
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3.1 Properties of Naive Estimators When θ01n Is Small

In this section, we consider a general model of measurement error, assuming that

Xi = X∗i + εi, E [εi|X∗i , Si] = 0. (3.1)

This condition is weaker than the assumptions made in, e.g., Newey (2001), Schennach (2007), or
Evdokimov and Zeleneev (2016). Neither the additive control variable structure, nor the assumption
of classical (or even conditionally homoskedastic) measurement error need to hold. This condition
alone is not sufficient for identification or estimation of models with measurement errors. We will
consider general moment condition models, using the following nonlinear regression example for
illustration.

Example GLM. We will pay particular attention to the GLM model

Yi = ρ (θ01nX
∗
i + θ′02Wi) + Ui, E[Ui|X∗i ,Wi, Zi], (3.2)

where ρ (·) is a smooth and typically monotone function. For example, in a binary choice model,
ρ (·) is a CDF of some smooth distribution.

Many standard estimators correspond to the moment condition model with the moments of the
form

g (Xi,Wi, Yi, θ) = (Yi − ρ(θ1Xi + θ′2Wi)) η (θ1Xi + θ′2Wi)hi, (3.3)

where v is some function, and hi ≡ h (Xi,Wi, Zi) is a vector.
For example, consider the NLLS estimator θ̂NLLS ≡ argminθ∈Θ

1
n

∑n
i=1 (Yi − ρ(θ1Xi + θ′2Wi))2

for estimation in the GLM Example. It is equivalent to the moment condition (3.3) with

ηNLLS (·) ≡ ρ′ (·) , and hNLLS,i ≡ (Xi,W
′
i )
′
.

Consider the binary choice model with P (Yi = 1|X∗i ,Wi) = ρ(θ01nX
∗
i + θ′02Wi), e.g., Probit or

Logit. The score of the MLE estimator in this model has the form of equation (3.3) with

ηBinChMLE (·) ≡ ρ′ (·)
ρ (·) (1− ρ (·)) , and hBinChMLE,i ≡ (Xi,W

′
i )
′
.

In equation (3.3), Xi enters in two ways: as a product θ1Xi, and by itself as a part of the
instrument vector hi. Thus, we consider general moment conditions of the form q(θ1x, x, θ2, s),
which identify θ0n if we have correctly measured X∗i :

E [q(θ01nX
∗
i , X

∗
i , θ02, Si)] = 0. (3.4)

We will consider moment restrictions q that satisfy the following additional condition:

E [q(θ01nX
∗
i , Xi, θ02, Si)] = 0. (3.5)

Notice that we have Xi instead of X∗i in the second argument.
Condition (3.5) is unusual, but holds under weak conditions in the nonlinear regression settings.

Consider the GLM model of equation (3.2). To verify condition (3.5), we need to make an additional

12



assumption:
E [Ui|X∗i ,Wi, εi] = 0.

The regression error term is mean independent of the measurement error. Some form of indepen-
dence between the regression and measurement errors is usually necessary, and is made by Hausman
et al. (1991), Newey (2001), Schennach (2007), Hu and Schennach (2008), and Evdokimov and Ze-
leneev (2016), among others. Then, for any function b, by the law of iterated expectations

E [(Yi − ρ(θ01nX
∗
i + θ′02Wi)) b (Xi,Wi, θ0n)] = E [E [Ui|X∗i ,Wi, εi] b (X∗i + εi,Wi, θ0n)] = 0,

so equation (3.5) holds. Note that the above arguments hold for all θ01n ∈ Θ and do not restrict
θ01n to be small.

Consider the GMM estimator with weighting matrix Ξ̂

θ̂q = argmin
θ∈Θ

qn (θ)′ Ξ̂qn (θ) . (3.6)

Generally, estimators θ̂q are biased in the presence of the measurement error, since E [q(θ01nXi, Xi, θ02, Si)] 6=
0. We will now consider the properties of θ̂q when θ01n is small, i.e., |θ01n| = on (1).

Remember that naive estimators typically do not suffer from the EIV bias when θ01n is exactly
zero. It turns out that all estimators with q satisfying equation (3.5) have this property. When
θ01n = 0,

E [q(θ01nXi, Xi, θ02, Si)]|θ01n=0 = E [q(θ01nX
∗
i , Xi, θ02, Si)]|θ01n=0 = 0, (3.7)

where the first equality holds because θ01nXi = 0 = θ01X
∗
i , and the second equality holds by

equation (3.5).
Let θ0n denote the “pseudo-true” value to which θ̂q converges, i.e., θ̂q− θ0n = op,n (1). Here θ0n

is a function of the true parameter θ0n. Equation (3.7) implies that when θ01n = 0, the pseudo-true
and true values coincide, i.e., θ0n = θ0n. Thus, typically, when θ01n is close to 0, θ0n is close to θ0n,
i.e., θ0n − θ0n = on (1) when θ0n1 = on (1).

Denote Q (θ) ≡ E [∇θqi (θ)]. Let Ωqq (θ) be the covariance matrix of qi (θ), and let Q ≡ Q (θ0n)
and Ωqq ≡ Ωqq (θ0n).

Theorem 1. Suppose |θ01n| = on (n−δ) for a δ > 0, and the moment conditions qi (θ) satisfy
equations (3.4) and (3.5). Suppose θ0n − θ0n = on (1), Ξ̂ − Ξ = op,n (1), λmin (Q′ΞQ) is bounded
away from zero. Then, under basic regularity conditions (see Appendix),

√
n
(
θ̂q − θ0n

)
→d N (0,Σq) , Σq ≡ (Q′ΞQ)−1

Q′ΞΩqqΞQ (Q′ΞQ)−1
,

θ0n = θ0n +Bqθ01n +On
(
θ2

01nσ
2) ,

Bq ≡ − (Q′ΞQ)−1
Q′Ξ× E [∇a1q(θ01nX

∗
i , Xi, θ02n, Si)εi] ,

where ∇a1q is the derivative of function q with respect to the first argument.

The bias of the naive estimator θ̂q can be ignored when
√
n
(
θ0n − θ0n

)
= on (1), since in this

case
√
n
(
θ̂q − θ0n

)
→d N (0,Σq) and the standard tests and confidence intervals are valid. The
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key implication of Theorem 1 is that Bq is generally of order 1, and hence the bias
√
nBqθ01n is

negligible only if θ01n = o
(
n−1/2), i.e., is very small.

Remark 2. We stress that the general model we consider is globally misspecified, in the sense that
the variance of the measurement error can be large, and that for most of the values of θ0n ∈ Θ the
bias of θ̂q is of order one. The Theorem proves that if the moment conditions satisfy the additional
property (3.5), the globally misspecified model behaves as if it were locally misspecified when θ01n

is small. Once this has been established, the derivation of the bias expression is standard.

Remark 3. Note that Ωqq (θ0n) − Ωqq
(
θ0n
)

= on (1) and Q (θ0n) − Q
(
θ0n
)

= on (1) . Thus,
λmin (Q′ΞQ) is bounded away from zero whenever λmin

(
Q
(
θ0n
)′ ΞQ (θ0n

))
is. Matrices Ωqq and Q

can be estimated by the standard sample Jacobian and covariance matrix estimators Ω̂qq

(
θ̂q
)
and

Qn

(
θ̂q
)
.

Remark 4. The bias term Bq cannot be estimated without further assumptions because εi is not
observed.

Remark 5. When the variance σ2 of the measurement error is small, the bias term Bqθ01n is of
order O (|θ01n|σ2). We investigate the implications of this in Sections 4 and 6. There, we also
consider general estimators that do not need to satisfy condition (3.5).

Non-Linear IV estimator Suppose we have an instrument, and consider Non-Linear IV (NLIV)
estimators in the GLM model. NLIV corresponds to the moment conditions

gNLIV,i (θ) = (ρ(θ1Xi + θ′2Wi)− Yi)ϕ (Zi,Wi, θ)

where ϕ (z, w, θ) is a vector of length p or larger. Equations (3.4) and (3.5) are satisfied for the
moments qi (θ) ≡ gNLIV,i (θ), and Theorem 1 applies.

It turns out that this naive NLIV estimator has much lower EIV bias than NLLS and MLE
when θ01n is small. For the NLIV, the moment conditions depend on Xi only through the product
θ1Xi, i.e., moment function qNLIV(θ1x, x, θ2, s) does not depend on its second argument. As a
result, Bq,NLIV = 0, since

E [∇a1qNLIV(θ01nX
∗
i , Xi, θ02n, Si)εi] = E [∇a1qNLIV(θ01nX

∗
i , θ02n, Si)E [εi|X∗i , Si]] = 0.

Thus, θNLIV
0n = θ0n +On

(
θ2

01nσ
2), and hence

√
n
(
θ̂NLIV − θ0n

)
→d N (0,ΣNLIV) , if θ01n = on

(
n−1/4

)
.

To sum up, NLIV estimator stands out among the naive estimators that do not correct for the
presence of measurement error. The bias of NLIV estimator is negligible when θ01n = on

(
n−1/4),

i.e., for a wider range of the true parameter θ01n.
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3.2 Simple Robust Inference

3.2.1 The Setup

Given the properties of the naive estimators, we may be able to construct inference procedures that
are uniformly valid for all values of θ01. Suppose we have two estimators (or inference procedures):
one that is valid for the “larger” values of |θ01n| and one that is valid when |θ01n| is small. For
example:

• θ̂L (“Larger” values of θ01n), which satisfies
√
nΣ̂−1/2

L

(
θ̂L − θ0n

)
→d N (0, 1) for nωL |θ01| →

∞ for an ωL ∈ (0, 1/2).

• θ̂NZ (“Near Zero”), which satisfies
√
nΣ̂−1/2

NZ

(
θ̂NZ − θ0n

)
→d N (0, 1) for nωNZ |θ01| → 0 for

an ωNZ > 0.

Here Σ̂L and Σ̂NZ are estimators of the asymptotic variances of θ̂L and θ̂NZ.
Condition nωL |θ01n| → ∞ defines a region of true parameters θ01n, for which estimator θ̂L

has the standard behavior, i.e., is asymptotically normal and unbiased. Estimator θ̂L corresponds
to one of the Measurement-Error Robust (MER) estimators. Condition nωNZ |θ01n| → 0, i.e.,
|θ01n| = o (n−ωNZ) defines a region of parameter values θ01n for which θ̂NZ estimator has the
standard properties. This region in particular includes θ01n = 0. As we have seen above, naive
estimators can satisfy the conditions imposed on θ̂NZ. For example, we can take θ̂NZ ≡ θ̂NLIV, with
ωNZ = 1

4 − δ for an arbitrarily small number δ > 0.
In Section 2 we have seen that MER estimators fail to have asymptotically normal distribution

when |θ01n| is too small. In Section 3.1 we saw that the naive estimators remain asymptotically
unbiased only if |θ01n| is sufficiently small.

Suppose a researcher wants to test a hypothesis (or construct a confidence set) for a function
of the parameter θ: r(·) : Θ → Rq, q 6 p. Most commonly, r(·) is a scalar function (q = 1)
representing, for example, a particular component of θ0n or a marginal effect implied by the model.
Formally, we want to test

H0 : r(θ0n) = v vs H1 : r(θ0n) 6= v.

Let Φ (·) denote the cumulative distribution function of the standard normal distribution.

Example (t-test of a linear hypothesis). Consider a linear hypothesis about parameter θ0n:

H0 : λ′θ0n = v vs H1 : λ′θ0n 6= v. (3.8)

When |θ01n| is sufficiently large, this null hypothesis can be tested with the standard t-statistic
based on the estimator θ̂L:

tL (v) ≡
√
n(λ′θ̂L − v)√
λ′Σ̂Lλ

. (3.9)
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The p-value of this test is pTL ≡ 2Φ (− |tL (v)|), and the test with the significance level α can be
written as

φTL = 1{pTL < α},

where φTL denotes the outcome of the test: it equals 1 if the null hypothesis is rejected and equals
0 otherwise.

When, |θ01n| is sufficiently small, a valid test of the null hypothesis (3.8) can be constructed
using the t-statistic tNZ(v) defined as in equation (3.9) with θ̂L and Σ̂L replaced by θ̂NZ and Σ̂NZ.
Let us call this test TNZ, and let us denote its p-value by pTNZ .

More broadly, for a given H0, let pTL and pTNZ denote p-values of some tests TL and TNZ that
are valid when nωL |θ01n| → ∞ and nωNZ |θ01n| → 0, respectively. The difficulty of the inference
problem is that test TL is not valid when |θ01n| is relatively “small”, and test TNZ is not valid
when |θ01n| is relatively “large”, so neither of the tests is valid uniformly for all values of the true
(unknown) parameter θ01n.

3.2.2 Robust Test TRobust

We can construct uniformly valid tests if the regions of validity of the two tests overlap, i.e., when

ωNZ < ωL. (3.10)

When this condition is satisfied, for any value of θ01n, at least one of the two tests TNZ and TL is
valid. Thus, we define a valid test TRobust of level α as

φTRobust = 1{pTRobust < α}, pTRobust ≡ max {pTNZ , pTL} . (3.11)

This test rejects H0 if and only if both tests TNZ and TL reject the null hypothesis. Hence, H0 is
rejected only if it is rejected by at least one valid test.

Test TRobust is simple, but is usually conservative. For example, if we knew that |θ01n| is small
enough for test TNZ to be valid, we would have preferred TNZ over TRobust, since the power of TNZ

is higher. More generally, we can think of these settings as having three regions of |θ01n|:

Region Condition Valid Test(s)
NZ |θ01n| = o (n−ωNZ) TNZ

INT |θ01n| = o (n−ωNZ) and nωL |θ01n| → ∞ TNZ and TL

L nωL |θ01n| → ∞ TL

Regions “NZ" and “L” have been described above. In the intermediate region “INT” both tests
are valid. This region is the overlap between “NZ” and “L” regions. To conduct uniformly valid
inference, regions “NZ” and “L” need to overlap, i.e., region “INT” should not be empty.
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3.2.3 Hybrid (Adaptive) Tests

When there is a way to consistently determine to which region parameter θ01n belongs, we can
provide more powerful inference procedures by adaptively combining different tests. Specifically,
suppose we can find an identification-category-selection (ICS) statistic ÂICS that allows us to de-
termine the region of parameter θ01n. For example, consider the statistic

ÂICS =
√
n
∣∣∣θ̂ICS,1

∣∣∣ /√v̂ICS,1 , (3.12)

where θ̂ICS,1 is an estimator of θ01n, and the scaling v̂ICS,1 aims to estimate the asymptotic variance
of θ̂ICS,1. Essentially, here ÂICS is the absolute value of the t-statistic for testing the hypothesis
θ01n = 0.

Large values of ÂICS can be treated as statistical evidence that |θ01n| is “sufficiently large”, so
the test TL is valid. Smaller values of ÂICS suggest that |θ01n| may not be large enough, and a
different test (TRobust or even TNZ) should be used instead.

For this categorization approach to work, it is important that θ̂ICS,1 is a precise estimator of
θ01n for all values of θ01n ∈ Θ. Whether we can find such an estimator θ̂ICS depends on the
specific MER estimation approach. Naive estimators (e.g., θ̂NZ) cannot be used as θ̂ICS estimators,
because for large |θ01n| their bias is of order 1. MER estimators (θ̂L) are potential candidates for
θ̂ICS. Although MER estimators are not asymptotically normal for some of the values θ01n, they
could still be sufficiently precise for all values of θ01n, to serve as θ̂ICS,1. For example, in Section 6
we show that the MME estimator θ̂MME satisfies θ̂MME − θ0n = Op

(
n−1/2) for all θ01n, i.e., is

uniformly
√
n-consistent. We also show that taking v̂ICS,1 ≡ Σ̂MME,11 in equation (3.12) yields a

valid category-selection statistic ÂICS. We propose two types of hybrid tests based on ÂICS.

Type-I hybrid test T IH is defined as φITH ≡ 1{pITH
< α} with the p-value given by

pITH ≡ (1− λ̂L) max{pTNZ , pTL}+ λ̂LpTL , λ̂L ≡ λ(ÂICS − κL,n),

where λ(z) = 1{z > 0}(1 − exp(−cz)) for some c > 0, and κL,n is a slowly growing threshold
sequence that satisfies nωL

(
n−1/2κL,n

)
→ ∞. This condition implies that |θ01n| ∝ n−1/2κL,n falls

into the “intermediate” region, where both TL and TNZ are valid. When ÂICS is much larger than
κL,n, λ̂L ≈ 1 and pITH

≈ pTL , i.e., type-I hybrid test T IH essentially behaves as test TL for large ÂICS.
On the other hand, λ̂L = 0 when ÂICS ≤ κL,n, so for smaller ÂICS, this hybrid test of type-I is
equivalent to TRobust test of equation (3.11).

Similar hybrid tests are often used to provide valid inference procedures in problems with weak
identification of some of the parameters. For example, Andrews and Cheng (2012) develop a
general framework for such problems and use ÂICS as in equation (3.12) to assess the strength of
identification of some parameters. They use a single test statistic, but develop two critical values for
it. The first critical value is valid only under (semi-)strong identification regime. The second value
is robust, i.e., valid regardless of the strength of identification, but is conservative. The computation
of such robust critical value is complicated, because it depends on the unknown weakly identified
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nuisance parameter. Andrews and Cheng (2012) then use the ICS statistic to smoothly link the
two critical values to obtain an adaptive critical value for the test statistic. Our type-I hybrid test
instead smoothly links the p-values to construct a test.9 When the identification is strong (|θ01n|
is large in our settings), such adaptive tests are efficient, in the sense that they coincide with the
non-conservative test TL. However, such tests are generally conservative when the identification is
weaker.

Our settings differ from the typical setup with weakly identified parameters. We may have an
alternative test TNZ that is valid when the identification of the nuisance parameter is weak, and
the usual test TL fails to deliver valid inference. As a result, in contrast to most of the literature
we can introduce another type of hybrid tests.

Type-II hybrid test T IIH is defined as φIITH = 1{pIITH
< α} with the p-value given by

pIITH ≡ (1− λ̂NZ − λ̂L) max{pTNZ , pTL}+ λ̂NZ pTNZ + λ̂LpTL , (3.13)

λ̂NZ ≡ λ(κNZ,n − ÂICS), λ̂L ≡ λ(ÂICS − κL,n).

Type-II hybrid test T IIH uses two threshold sequences κL,n and κNZ,n that satisfy the following
conditions: (i) 0 < κNZ,n ≤ κL,n, (ii) nωL

(
n−1/2κL,n

)
→ ∞, and (iii) nωNZ

(
n−1/2κNZ,n

)
→ 0.

When κNZ,n < ÂICS, λ̂NZ = 0 and test T IIH is identical to T IH . Test T IIH differs only when ÂICS is
sufficiently small so κNZ,n > ÂICS. The lower values of ÂICS indicate that |θ01n| is likely to be small,
and TNZ is likely to be valid. When ÂICS is substantially smaller than κNZ,n, λ̂NZ ≈ 1, λ̂L = 0, and
pIITH
≈ pTNZ , so test T IIH is nearly identical to test TNZ. Thus, T IIH has higher power than T IH when

|θ01n| is small. For the intermediate values of ÂICS ∈ [κNZ,n, κL,n], λ̂NZ = λ̂L = 0 and T IIH coincides
with TRobust. This represents the uncertainty about whether |θ01n| is large enough for TL to work,
or small enough for TNZ to work, so TRobust is used.

Consider an oracle test that “knows” the true magnitude of θ01n and chooses between non-
conservative tests TL and TNZ accordingly. Type-II hybrid test T IIH is essentially equivalent to the
oracle test both when the nuisance parameters are strongly identified and when they are weakly
identified. This differs from most of the literature on inference in problems with weakly identified
parameters, which typically only provides tests that are non-conservative when the identification is
strong, but not when it is weak, i.e., tests similar to the hybrid test of type-I. For the intermediate
values of |θ01n|, it is harder to determine whether TL or TNZ is valid, so test T IIH relies on the robust
test TRobust.

The choice of κNZ,n, κL,n, and λ (z) is important in practice. We provide some details and
recommendations in Section 7.

Remark 6. As usual, the corresponding type-I and type-II hybrid confidence sets can be con-
structed by the test inversion.

9Suppose pT1 and pT2 are the p-values of two valid tests of the same hypothesis. Take a λ ∈ (0, 1). Test φn =
1{(1− λ) pT1 + λpT2 < α} is generally not a valid test of size α, but test φn = 1{(1− λ) max {pT1 , pT2}+ λpT2 < α}
is.

18



Remark 7. For the above ICS procedures to work, estimator θ̂ICS,1 needs to be precise enough
uniformly over all values of θ01n. Some category-selection tests can be constructed without this con-
dition. Consider Âmin ≡ min {|t̂L| , |t̂NZ|} and Âmax ≡ max {|t̂L| , |t̂NZ|}, where t̂L ≡

√
nΣ−1/2

L,11 θ̂L,1

and t̂NZ ≡
√
nΣ−1/2

NZ,11θ̂NZ,1 denote the t-statistics for testing θ01n = 0 based on θ̂L and θ̂NZ, respec-
tively.

Since either t̂L or t̂NZ must be valid for any value of θ01n, large values of Âmin can be treated
as statistical evidence that |θ01n| is “sufficiently large”, so the tests TL based on θ̂L are valid.
Hence, we can use test φITH with λ̂L ≡ λ(Âmin − κL,n). Likewise, small values of Âmax provide
evidence that |θ01n| is relatively “small”. Then we could consider an analog of hybrid test φIITH

with λ̂NZ ≡ λ(κNZ,n − Âmax), and λ̂L ≡ λ(Âmin − κL,n). The values κL,n and κNZ,n may need to
be altered to accommodate the changes in the category selection criteria. Since the regions, over
which these alternative hybrid tests coincide with TRobust, are wider, these tests are likely to have
lower power than the corresponding tests based on ÂICS.

Remark 8. If one is interested in inference about θ01n itself, a “null-imposed” category selection
criterion can be used ÂICS ≡

√
n |θ01n|

/√
v̂ICS,1 .

4 Moderate Measurement Error Framework

4.1 Moment Conditions and Estimator

Suppose a researcher has a general semiparametric model that can be represented by a set of
moment conditions

E[g(X∗i , Si, θ)] = 0 iff θ = θ0n, (4.1)

for some m-dimensional moment function g(·), and a p-dimensional parameter of interest θ0n.
Variables X∗i are mismeasured, while variables Si are not. Were a random sample {(X∗i , Si)}ni=1
available, parameters θ0n could have been estimated using standard GMM estimators, which would
have been

√
n-consistent and asymptotically normal and unbiased. However, instead of X∗i the

researcher observes
Xi = X∗i + εi,

the analogue of X∗i contaminated with the measurement error εi.10 If the researcher ignores the
problem of measurement errors, and estimates model (4.1) with Xi in place of X∗i , the standard
GMM estimator suffers from the EIV bias, and the corresponding tests (t, Wald, etc.) and confi-
dence sets are invalid.

10Although we denote the mismeasured variables by Xi, these variables need not be covariates. For instance, in
general nonlinear models, Xi may denote a mismeasured outcome variable, since measurement error in any variable
generally leads to the EIV-bias.

19



Evdokimov and Zeleneev (2016) develop a framework for estimation of general semiparametric
models with EIV. They make use of an alternative asymptotic approximation that models the
magnitude of the measurement error as shrinking with the sample size. The rationale behind this
approach is as follows. On the one hand, in many settings of interest viewing at least some of the
variables as perfectly measured is implausible. On the other hand, the researchers may believe that
the magnitude of the measurement errors is not too large, so that the signal X∗i dominates the noise
εi, and the magnitude of the EIV-bias of the naive estimator is thought to be somewhat comparable
to its standard errors. To provide a better approximation of the finite sample properties of the
estimators in such settings, it is useful to model the distribution of εi as drifting with the sample
size in a particular way.

Specifically, in the spirit of Amemiya (1985); Chesher (1991), suppose that the variance and
the higher-order moments of εi (slowly) shrink towards zero as the sample size grows. Suppose
E[εi] = 0 and let σ2

n ≡ E[ε2
i ]. For exposition, it will be convenient to assume that E[|εi/σn|K+1] is

bounded, so E[|εi|`] ∝ σ`n.
When σ2

n → 0 as n→∞, under some regularity conditions,

E[g(Xi, Si, θ)] = E[g(X∗i , Si, θ)] + E
[
K∑
k=1

εki
k! g

(k)
x (X∗i , Si, θ)

]
+O(E

[
|εi|

K+1
]
)

= E[g(X∗i , Si, θ)] +
K∑
k=1

1
k!E[εki ],E

[
g(k)
x (X∗i , Si, θ)

]
+O(σK+1

n ), (4.2)

where we use the notation g(k)
x (x, s, θ) ≡ ∂kg (x, s, θ) /∂xk.

In particular this implies that

E[g(Xi, Si, θ0n)] = O(σ2
n), (4.3)

and hence a naive GMM estimator that ignores the measurement error and uses Xi in place of X∗i
has bias of order σ2

n. Thus, the naive estimator is asymptotically biased, unless the measurement
error is very small (theoretically, unless σ2

n = on
(
n−1/2)). Moreover, if σ2

n shrinks at a rate slower
than On

(
n−1/2), the naive estimator is not

√
n-consistent. The tests based on the naive estimator

(e.g., t-statistics) can then provide highly misleading results.
Evdokimov and Zeleneev (2016) consider estimation and inference in these settings using the

Moderate Measurement Error (MME) framework that relies on the following key assumption:

Assumption MME (Moderate Measurement Errors). (i) εi is independent from (X∗i , Si) and
E[εi] = 0; (ii) σ2

n = o(n−1/(K+1)) for some integer K > 2, and E[|εi/σn|L] is bounded for some
L ≥ K + 1.

Assumption MME (i) is the classical measurement error assumption. Assumption MME (ii)
ensures that the bias due to the remainder in equation (4.2) is negligible.11

11Assumption MME (ii) can be replaced with a weaker condition E[|εi|L] = o
(
n−1/2), in which case one should

define σn ≡ E
[
|εi|L

]1/L. We use the stated form of Assumption MME (ii) to simplify the exposition.
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Thus, we can rearrange equation (4.2) as

E[g(X∗i , Si, θ)] = E[g(Xi, Si, θ)]−
K∑
k=2

E[εki ]
k! E

[
g(k)
x (X∗i , Si, θ)

]
+ o(n−1/2). (4.4)

The left-hand side of this equation is exactly the moment condition (4.1) that we would like to use
for estimation of θ0n. The first term on the right-hand side involves only observed variables, and
hence can be estimated by the sample average En [g(Xi, Si, θ)] . The second term on the right-hand
side can be viewed as the bias correction that removes the EIV-bias from E[g(Xi, Si, θ)].

Evdokimov and Zeleneev (2016) use representation (4.4) as a point of departure to jointly
estimate parameters θ and the moments of the measurement error. The right-hand side of equa-
tion (4.4) could be viewed as a moment condition, except the expectations E

[
g
∗(k)
xi (θ)

]
cannot be

immediately estimated from data, since X∗i is not observed. To obtain a feasible moment condi-
tion, one can estimate E

[
g
∗(k)
xi (θ)

]
by En

[
g

(k)
xi (θ)

]
. As Evdokimov and Zeleneev (2016) point out,

a naive application of this strategy generally does not work. En
[
g

(k)
xi (θ)

]
is a biased estimator,

since E
[
g

(k)
xi (θ)

]
− E

[
g
∗(k)
xi (θ)

]
= O (σ2

n), and this bias is not negligible in general. When K ≥ 4,
one needs to bias correct the estimator of the bias correction term. However, the bias corrected
correction term is itself a linear combination of the higher order derivatives of g(k)

xi , and hence one
can use the following corrected moment function:

ψ(Xi, Si, θ, γ) ≡ g(Xi, Si, θ)−
K∑
k=2

γkg
(k)
x (Xi, Si, θ), (4.5)

where γ = (γ2, . . . , γK)′ is a K − 1 dimensional vector of nuisance parameter to be estimated.
Evdokimov and Zeleneev (2016) show that for some γ0n,

E[ψ(Xi, Si, θ0n, γ0n)] = o
(
n−1/2

)
, (4.6)

and hence the corrected moment conditions ψ can be used to estimate the true parameters θ0n and
γ0n.12 The values γ0kn are related to the moments of εi as follows:

γ02n = σ2
n/2, γ03n = E

[
ε3
i

]
/6, and γ0kn = E [εki ]

k! −
k−2∑
`=2

E
[
εk−`i

]
(k − `)! γ0`n for k ≥ 4.

It is important to note that γ0kn 6= E [εki ] /k! for k ≥ 4, contrary to what equation (4.4) might
suggest. For example, γ04n = (E [ε4

i ]− 6σ4
n) /24 is negative for many distributions, including

Normal. The reason that generally γ0kn 6= E [εki ] /k! is that the estimators of the correction terms
themselves need a correction, which is accounted for by the form of γ0kn. Since there is a one-to-
one relationship between γ0n and the moments E [ε`i ], parameter space Γ for γ0n can incorporate
restrictions that the moments must satisfy (e.g., σ2

n ≥ 0 and E [ε4
i ] ≥ σ4

n). Such restrictions can
increase the efficiency of the estimator and power of the tests.

12In the moment condition settings, having o
(
n−1/2) is equivalent to having 0 on the right-hand side of equa-

tion (4.6).
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Moderate Measurement Errors (MME) estimator is a GMM estimator (Hansen, 1982)
based on the moment conditions (4.5):(

θ̂, γ̂
)
≡ argmin

θ∈Θ,γ∈Γ
Q̂ (θ, γ) , Q̂ (θ, γ) ≡ ψ(θ, γ)′Ξ̂ψ(θ, γ), (4.7)

where Θ and Γ are the parameter spaces for θ and γ, and Ξ̂ is a weighting matrix.

MME jointly estimates the parameters of interest θ0n and the nuisance parameters γ0n, so it is
convenient to consider the joint vector of parameters

β ≡ (θ′, γ′)′, β0n ≡ (θ′0n, γ′0n)′, β̂ ≡ (θ̂′, γ̂′)′.

Let B ≡ Θ× Γ. Then, equation (4.7) can be equivalently written as

β̂ = argmin
β∈B

Q̂(β), Q̂(β) ≡ ψ(β)′Ξ̂ψ(β).

Under some regularity conditions, estimator β̂ behaves as a standard GMM-type estimator: it
is
√
n-consistent and asymptotically unbiased:

n1/2Σ−1/2(β̂ − β0n) d→ N(0, Ip+K−1), (4.8)

Σ ≡ (Ψ′ΞΨ)−1Ψ′ΞΩψψΞΨ(Ψ′ΞΨ)−1. (4.9)

The asymptotic variance Σ takes the standard sandwich form, with Ψ ≡ E [∇βψi(β0n)], Ωψψ ≡
E [ψiψ′i], and Ξ = plimn→∞ Ξ̂.

Thus, the MME approach addresses the EIV problem, and provides an asymptotically normal
estimator θ̂ that can be used for drawing inference about θ0n using standard tests and confidence
intervals. Of course, for equation (4.8) to hold, one has to assume that the nuisance parameters
γ0n are identified, i.e., |θ01n| is sufficiently large.

Remark 9. Although MME asymptotic approximation considers γ02 = on (1), to avoid imposing
arbitrary restrictions on γ0n, the parameter set Γ is not shrinking with the sample size. In practice,
we restrict it by assuming a lower bound on the the signal-to-noise ratio, e.g., σ2

n/σ2
X∗ ≤ 1.

Remark 10. No parametric assumptions are imposed on the distribution of εi.

Remark 11. Considering larger K allows σ2
n converging to zero at a slower rate, which in finite

samples corresponds to the asymptotics providing good approximations for larger ranges of values
of E [ε2

i ]. Taking larger K increases the dimension of the nuisance parameter γ0n, and requires
having at least m > p+K − 1 moment conditions.

Remark 12. In contrast to most alternative approaches, in the MME framework, having a discrete
instrument can be sufficient for identification and estimation of θ0n.

Remark 13. For the weighting matrix, 2-step GMM estimator uses Ξ̂GMM2 ≡ Ω̂−1
ψψ(θ̃, γ̃), where(

θ̃, γ̃
)
are some preliminary estimators. Although not indicated by the notation in equation (4.7),

the weighting matrix Ξ̂ ≡ Ξ̂(θ, γ) is allowed to be a function of θ and γ. For example, Continuously
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Updating GMM Estimator corresponds to Ξ̂CUE (θ, γ) ≡ Ω̂−1
ψψ(θ, γ). One may also consider the “reg-

ularized” versions of the weighting matrices Ξ̂GMM2,R ≡ Ω̂−1
ψψ(θ̃, 0) and Ξ̂CUE,R (θ, γ) ≡ Ω̂−1

ψψ(θ, 0)
that set γ = 0. Since γ0n is assumed to be small, the regularized weighting matrices do not cause
a loss of efficiency, but can be useful when γ0n is poorly identified.

Remark 14. Moment conditions ψ are linear in γ, and it is convenient to choose the weighting
matrix Ξ̂(θ, γ) that does not depend on γ, e.g., any of the weighting matrices in the previous remark
except Ξ̂CUE. Then, Q̂n (θ, γ) is a quadratic form in γ, hence γ can be profiled out analytically.
This reduces the optimization problem to minimizing Q̂n (θ, γ̂ (θ)) over θ ∈ Θ. Then, the dimension
of the optimization parameter θ for the corrected moment condition problem remains the same as
for the original estimation problem without the EIV correction.

Example GLM. Consider the Generalized Linear Model (GLM) of equation (3.2). It can be
written as a conditional moment restriction

E[(ρ(X∗i ,Wi, θ0n)− Yi) |X∗i ,Wi, Zi] = 0,

which can be converted into the unconditional moment restrictions E[g(X∗i , Si, θ0n)] = 0:

g(x,w, y, z, θ) ≡ (ρ(x,w, θ)− y)h(x, z, w),

where Si ≡ (Wi, Yi, Zi). Here h(x, z, w) is a vector of instrument functions, for example h(x, z, w) ≡
(x, x2, z, xz, w′)′.

4.2 Weak Identification of γ0n

Since the issue of weak identification of the distribution of εi is the feature of the EIV problem,
MME estimator also suffers from it. Let us demonstrate how this issue of weak identification arises
in the MME framework. The standard local identification condition for the GMM estimators is
that the Jacobian matrix Ψ has full column rank, or, more precisely, that

λmin (Ψ′Ψ) is bounded away from zero. (4.10)

Identification of nonlinear models with measurement errors is an intricate question. Evdokimov
and Zeleneev (2016) study identification in the MME framework in detail. For example, for con-
dition (4.10) to hold, it may be necessary to have an instrumental variable. Condition (4.10) is
necessary for a GMM estimator β̂ to be

√
n-consistent and asymptotically normal. Note that we

can split Ψ into two parts:

Ψ ≡ ( Ψθ , Ψγ )

Ψθ ≡ E [∇θψi(θ0n, γ0n)] , Ψγ ≡ E [∇γψi(θ0n, γ0n)] .

To simplify the exposition, let us focus on the case of K = 2 for the rest of this section. Then,
γ ≡ γ2,

ψ(Xi, Si, θ, γ) = g(Xi, Si, θ)− γgxx (Xi, Si, θ) .
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First, consider Ψθ. Let G ≡ E [∇θgi(θ0n)] and Gxx ≡ E [∇θgxxi(θ0n)].13 Then Ψθ = G− γ0nGxx =
G+ on(1), since γ0n = on(1). It is natural to assume that Ghas full column rank, since this would
have been the local identification condition for the GMM estimator of model (4.1) had X∗i been
observable. Thus, typically Ψθ = G+ on(1) has full column rank.

The local identification of γ0n is controlled by the Jacobian Ψγ = gxx (θ0n) ≡ E [gxx (Xi, Si, θ0n)].
In the MME framework, the general problem of weak identification of the nuisance parameters
considered in Section 2 manifests itself in the violation of the local identification condition (4.10)
due to

λmin
(
Ψ′γΨγ

)
→ 0 as |θ01n| → 0. (4.11)

In particular, λmin
(
Ψ′γΨγ

)
= 0 when θ01n = 0. The smaller |θ01n| is, the less information about

γ0n we have. For small |θ01n|, estimator γ̂ is imprecise or even inconsistent.

Example GLM (continued). gxx (x,w, y, z, θ) = ∇xx [(ρ (θ1x+ θ′2w)− y)h (x, z, w)], so

gxx (x,w, y, z, θ) = (ρ (θ, x, w)− y)hxx (x, z, w)+2θ1ρ
(1) (θ, x, w)hx (x, z, w)+θ2

1ρ
(2) (θ, x, w)h (x, z, w) ,

(4.12)
where ρ(k) is ∂k/∂akρ (a) . When θ01n = 0,

Ψγ = gxx (θ0n)|θ01n=0 = E [(ρ (0 + θ′02Wi)− Yi)hxx (Xi,Wi, Zi)] = 0, (4.13)

and hence the local identification condition is violated. On the other hand, if the instruments are
strong, condition (4.10) is satisfied as long as ‖θ01n‖ is bounded away from zero.

Thus, in the GLM example, and any other model with the property (4.11), β̂ is not
√
n-consistent

and the asymptotically normal approximation (4.8) generally does not hold when θ01n → 0. In the
following sections we study the properties of the estimators θ̂ and γ̂. Interestingly, we show that
in many models we may expect θ̂ (but not γ̂) to be

√
n-consistent, regardless of the magnitude of

|θ01n|. At the same time, the asymptotic theory confirms the findings of Section 2 that in general θ̂
may not be approximately normally distributed when |θ01n| is small. We then establish the uniform
validity of the inference procedures considered in Section 3.2.

Next, we outline some of the main ideas and provide the roadmap of the analysis of the properties
of θ̂ and γ̂. The asymptotic theory is then formally developed in Section 6.

4.3 Properties of θ̂ and γ̂: an Overview

Let us consider the local identification properties of the moment condition ψ. For simplicity, suppose
K = 2 so γ is a scalar and

ψ (θ, γ) ≡ g (θ)− γgxx (θ) . (4.14)
13For clarity, in this and the next subsections, for a function a, we often write ax and axx in place of a(1)

x and a(2)
x .
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Estimator θ̂ turns out to be consistent regardless of the strength of identification of γ0n. To
understand the properties of θ̂ and γ̂, consider the approximation of the moment condition ψ (θ, γ)
in a shrinking neighborhood of θ0n, i.e., for θ ∈ Bδn (θ0n) for some δn → 0. Then

ψ (θ, γ)

= ψ (θ0n, γ) + Ψθ (θ0n, γ) (θ − θ0n) + op,n (‖θ − θ0n‖)

= ψ (θ0n, γ0n) + Ψθ (θ0n, γ0n) (θ − θ0n)− (γ − γ0n) [gxx (θ0n) +Gxx (θ0n) (θ − θ0n)] + op,n (‖θ − θ0n‖) ,

where the first equality follows by the Taylor expansion in θ around θ0n, and the second equality
follows from the linearity of ψ (θ, γ) in γ and rearranging the terms using equation (4.14). Note that
this approximation does not impose any restrictions on γ, other than ‖γ‖ being bounded (since Γ
is compact). By the Central Limit Theorem we expect

√
nψ →d N (0,Ωψψ) and

√
nξ2n = Op,n (1)

for ξ2n ≡ gxx (θ0n) − gxx (θ0n). Moreover, by the Law of Large Numbers Ψθ − Ψθ = op,n (1) and
Gxx − Gxx = op,n (1), for some bounded Ψθ and Gxx. Thus, omitting the arguments of functions
evaluated at (θ0n, γ0n), for θ ∈ Bδn (θ0n) we have

√
nψ (θ, γ) =

√
nψ︸ ︷︷ ︸

N(0,Ωψψ)

+ Ψθ︸︷︷︸
≈G

√
n (θ − θ0n)−(γ − γ0n)

√ngxx +
√
nξ2n︸ ︷︷ ︸

Op,n(1)

+Gxx
√
n (θ − θ0n)

+op,n (
√
n (θ − θ0n)) .

(4.15)
The local identification of γ0n and the properties of θ̂ and γ̂ depend on the term

√
ngxx. It

helps to think of the following three scenarios:
Strong-ID: ‖gxx‖ is bounded away from zero;
Semi-Strong-ID: ‖gxx‖ → 0 “slowly” with the sample size, so

√
n ‖gxx‖ → ∞;

Weak-ID: ‖gxx‖ → 0 “quickly” with the sample size, so
√
n ‖gxx‖ → C ∈ [0,∞).

In the next section we will give more precise characterization for these scenarios, and study the
properties of the estimators under each of them. Considering such three scenarios is typical in the
literature addressing the settings, in which some parameters are weakly identified, for example, see
Andrews, Cheng, and Guggenberger (2011).

The “Strong-ID” scenario corresponds to the standard GMM estimator settings with no concerns
about weak identification of the nuisance parameter. When ‖θ01n‖ is bounded away from zero, ‖gxx‖
is bounded away from zero. Then, the first term in the square brackets in equation (4.15) dominates,
the second and third terms are negligible, and the asymptotically normal approximation (4.8) holds.

When ‖θ01n‖ is close to zero, ‖gxx‖ can be close to zero and the second and third term in
the square brackets may become non-negligible, generally causing θ̂ and γ̂ to have nonstandard
asymptotic distributions. It is useful to linearize gxx ≡ gxx (θ0n) around θ01n = 0, i.e., under some
regularity conditions we can write

gxx (θ0n) = Aθ01n + on (|θ01n|) ,

for a vector A ≡ A (θ02n) that does not depend on θ01n. When A 6= 0,
√
n ‖gxx‖ ∝

√
nθ01n, and the

“Semi-Strong-ID” scenario corresponds to
√
n |θ01n| → ∞, i.e., |θ01n| shrinking to zero at a slower

than n−1/2 rate.
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In the “Semi-Strong-ID” scenario,
√
n ‖gxx‖ → ∞ and hence the second and third term in the

square brackets are dominated by the first one. Since Ψ = (G, gxx) + on (1), the full rank condition
on Ψ in this scenario is replaced with:

matrix (G,A) has full column rank.

The first two scenarios have many features in common. In particular, the estimators
(
θ̂, γ̂

)
are both

consistent and asymptotically normal, and θ̂ is
√
n-consistent. However, the rate of convergence

of γ̂ is
√
n |θ01n|, and is slower than

√
n in the “Semi-Strong-ID” case. The first two scenarios are

considered in Section 6.1.
The “Weak-ID” scenario corresponds to

√
n |θ01n| = On (1). In the square brackets in equa-

tion (4.15), term
√
ngxx is bounded and hence the other two terms in the square brackets affect

the properties of θ̂ and γ̂. As a result, γ̂ is inconsistent, and θ̂ does not have an asymptotically
normal distribution. Notice that the term involving Gxx is now affecting identification of θ0n. Sec-
tion 6.2 below studies the “Weak-ID” scenario and proves that estimator θ̂ remains

√
n-consistent

for arbitrarily small |θ01n| if matrix G− cGxx has full column rank for all c.
Combining these conditions, if matrix (G− cGxx, A) has full column rank for all c, θ̂ − θ0n =

Op,n
(
n−1/2) uniformly over all values of θ01n.

Remark 15. We can writeA (θ02n) asA (θ02n) = ∇θ01n

∫
gxx (x, s, (θ01n, θ02n)) dFX,S (x, s|θ01n, θ02n).

Note that θ01n appears twice under the integral sign, soA (θ02n) is not equal to E [∇θ01ngxx (Xi, Si, (θ01n, θ02n))].
Note that A (θ02n) only appears in the regularity conditions, and is not used for estimation or in-
ference.

Remark 16. It turns out that the identification conditions can be equivalently written with X∗i
in place of Xi in the expectations. We indicate expectations computed with X∗i in place of Xi with
superscript “∗”. For example, the condition for uniform

√
n-consistency of θ̂ can be equivalently

stated as: matrix (G∗ − cG∗xx, A∗) has full column rank for all c.

Example GLM (Continued). Consider θ01n = on (1). From equation (4.12) we have

g∗xx ≡ E [gxx(X∗i ,Wi, θ0n)] = Eθ0n

[
2θ01nρ

(1)(θ01nX
∗
i + θ′02Wi)h∗xi

]
+O

(
‖θ01n‖2

)
= A∗θ01n +O

(
‖θ01n‖2

)
, where A∗ ≡ 2E

[
ρ(1)(θ′02Wi)h∗xi

]
.

The strength of identification of γ0n is proportional to |θ01n|. By a direct calculation, G∗ =
E
[
ρ(1)(θ′02Wi)hi × (Xi,W

′
i )
]

+ On (|θ01n|) and G∗xx = E
[
(ρ(1)(θ′02Wi) (X∗i h∗xxi + 2h∗xi,W ′ih∗xxi)

]
+

On (|θ01n|).
For illustration, consider hi ≡ (Xi,Wi, Zi)′, Wi = 1, and, without loss of generality, E [X∗i ] =

E [Zi] = 0. Denote %02 ≡ ρ(1)(θ02). Then, up to the on (1) terms,

G∗ = %02


σ2
X∗ 0
0 1

σZX∗ 0

 , A∗ = 2%02


1
0
0

 , G∗xx = %02


2 0
0 0
0 0

 ,
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where we have used equality ρ(1)(θ01nx + θ′02w) = %02 + On (|θ01n|) repeatedly to simplify the ex-
pressions. The identification condition in the Semi-Strong-ID scenario is that matrix (G∗, A∗) has
full column rank. This condition is satisfied as long as instrument Zi is relevant, i.e., σZX∗ 6= 0.
Moreover, when σZX∗ 6= 0, matrix (G∗ − cG∗xx, A∗) has full column rank for all c. Thus, the local
identification condition for uniform

√
n-normality is also satisfied.

As in the GLM example, verification of the regularity conditions is greatly simplified by the focus
on θ01n = on (1), since this leads to linearization of the moment conditions and their derivatives.

Remark 17. A reader familiar with the work of AC12 might be surprised by our linearizing the
moment condition ψ (θ, γ) in θ1 around θ01n and not around 0, as was suggested by AC12. The
key assumption of AC12, stated in our notation, is that the sample criterion function does not
depend on γ when evaluated at θ1 = 0, i.e., that Q̂ ((θ1, θ2) , γ)

∣∣∣
θ1=0

does not depend on γ.14

This condition is generally violated for the MME estimator. For example, in the GLM model,
gxxi ((0, θ2)) = (ρ (θ′2Wi)− Yi)h(2)

x (Xi,Wi, Zi) and hence ψ ((0, θ2) , γ) and Q̂ ((0, θ2) , γ) depend
on γ. As a result, our analysis differs substantially from that of AC12.

Remark 18. In general, parameter θ1 that controls identification of γ0n may be a vector. For
example, suppose E [Yi`|X∗i ,Wi] = ρ`

(
θ01,`X

∗
i + θ′02,`Wi

)
for ` ∈ {1, 2}, as in, e.g., multinomial

choice model with 3 choices. Consider the moment conditions

g (Xi, Si, θ) ≡
((
ρ1(θ1,1Xi + θ′2,1Wi)− Yi1

)
h1 (Xi, Zi,Wi)(

ρ2(θ1,2Xi + θ′2,2Wi)− Yi2
)
h2 (Xi, Zi,Wi)

)
.

Here, θ1 ≡ (θ1,1, θ1,2)′, since to identify γ0n it is sufficient that at least one of the two coefficients
on Xi is not zero. In other words, γ0n is weakly identified only when ‖(θ01,1, θ01,2)′‖ → 0.

In the next section we provide a formal analysis of the MME estimator and inference procedures,
in particular considering expansions of general order K and multivariate θ1.

5 Finite Sample Experiments

To illustrate the finite sample properties of the proposed hybrid test, we consider the following logit
model

Yi = 1{θ01X
∗
i + θ02Wi + θ03 − ζi > 0}, ζi ∼ Logistic,

X∗i = Zi + Vi, Xi = X∗i + εi, Wi = ρX∗i /
√
σ2
Z + σ2

V +
√

1− ρ2νi,

ζi ⊥ (Zi, Vi, εi, νi)′ ∼ N
(
(0, 0, 0, 0)′, Diag(σ2

Z , σ
2
V , σ

2
ε, σ

2
ν)
)
.

14This is Assumption A in AC12; see also the discussion immediately following Assumption C1 on page 2169 of
their paper.
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We fix (θ02, θ03, ρ, σ
2
Z , σ

2
V , σ

2
ε, σ

2
ν) = (0, 1, 0.7, 1, 1, 1, 1) and n = 1000 and vary θ01 ∈ {0, 0.15, 0.5, 1.0},

which controls the strength of identification of the nuisance parameter.
We focus on testing the null hypothesis H0 : θ01n = v against H1 : θ01n 6= v at the α = 5% signif-

icance level. We evaluate the finite sample properties of the following tests. First, we consider the
standard t-test based on the naive MLE estimator (tMLE), which ignores the presence of the measure-
ment error. Second, we consider the t-test based on the NLIV estimator (tNLIV), which corresponds
to the moment function gNLIV,i(θ) = (ρ(θ1Xi + θ02Wi + θ03)− Yi) (1, Zi,Wi)′, where ρ stands for
the logistic CDF. Third, we consider the t-statistic based on the MME estimator of Evdokimov
and Zeleneev (2016) (tMME). Specifically, following Evdokimov and Zeleneev (2016), we transform
the original moment function gi(θ) = (ρ(θ1Xi + θ02Wi + θ03)− Yi) ((1, Xi, X

2
i )⊗ (1, Zi),Wi)

′ into
ψi(θ, γ) = gi(θ) − γgxx,i(θ) using the simplest correction scheme with K = 2. Then, the consid-
ered MME estimator corresponds to the two-step GMM estimator based on the corrected moment
function ψi. Forth, we consider the projection test based on the S-statistic of Stock and Wright
(2000) using the corrected moment function ψi(θ, γ) as a benchmark identification robust test.
Specifically, since conditional on the true value of γ = γ0n, θ02 and θ03 are strongly identified, we
take the 1 − α quantile of χ2

5 as the critical value of the S-test. Finally, we consider the type II
hybrid test as in (3.13) (HII), which uses tNLIV as TNZ and tMME as TL and

ÂICS =

∣∣∣θ̂MME,1
∣∣∣

s.e.
(
θ̂MME,1

) .
The thresholds are chosen as κNZ,n = 0.75n1/10 and κL,n = 0.5n1/5, and the weights are computed
as λ̂NZ = λ(κNZ,n−ÂICS; cNZ) and λ̂L = λ(ÂICS−κL,n; cL), where λ(z; c) = 1{z > 0}(1−exp(−cz)).
Specifically, we report the results for cNZ = 2 and cL = 2.15

Figure 5 below presents the rejection rates (based on 5000 replications) of the considered tests
for θ01 equal 0 (γ0n is not identified), 0.15 (γ0n is weakly identified), and 0.5 and 1.0 (γ0n is
strongly identified). Since the MLE estimator suffers from the EIV bias unless θ01 = 0, tMLE is
heavily size distorted even when θ01 = 0.15 and wrongly rejects the true null hypothesis (almost)
100% of the time when θ01 ∈ {0.5, 1.0}. The MME estimator effectively removes the EIV bias,
and the corresponding test tMME controls size in the strong identification scenarios. However, tMME

fails to control size when identification of γ0n is weak (θ01 = 0.15). As predicted in Section 3, the
EIV bias of the NLIV estimator is substantially smaller relative to the bias of the MLE estimator
when θ01 is not “too large”, and tNLIV controls size in all designs (however, its power is very
low when θ01 = 1.0). The hybrid test HII controls size in all designs. It behaves as tNLIV when
θ01 ∈ {0, 0.15} (weak identification of γ0n) and as tMME when θ01 ∈ {0.5, 1.0} (strong identification
of γ0n). Notice that switching to tNLIV under weak identification of γ0n is also advantageous in
terms of the power: both tNLIV and HII considerably overperform the projection S-test serving as a
benchmark identification robust test.

15The rejection rates of HII are similar for cNZ, cL ∈ {1, 2, 4}.
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Figure 5: Simulated rejection probabilities of the tMLE (solid gray w/ diamonds), tNLIV (dashed
red), tMME (loosely dashed thick blue), projection S (dashed thick green), and HII (solid purple)
tests against the hypothesized value v for θ01 ∈ {0, 0.15, 0.5, 1.0}. The results are based on 5000
replications with sample size n = 1000. The nominal level of the tests is 5%.

6 Large Sample Theory in the MME Framework

In this section, we formally introduce the MME framework and study asymptotic properties of
the MME estimator. In particular, we provide a set of low-level regularity conditions that ensure
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validity of the results, which were informally introduced in the previous section. The outline of
the section is as follows. First, we establish asymptotic normality of the MME estimator under
semi-strong and strong identification of γ0n. Second, we demonstrate that the MME estimator is
also uniformly

√
n-consistent regardless the strength of γ0n identification. Finally, we also study

the asymptotic properties of the uncorrected estimator, which ignores the potential presence of the
measurement error. In particular, we show that the uncorrected estimator is asymptotically normal
and unbiased when ‖θ01n‖ is sufficiently “small”.

Before proceeding with the asymptotic analyses, let us introduce the following notations. We
use Υn to denote the distribution of (X∗i , Si, εi) in a sample of size n. Note that every Υn is
implicitly associated with a unique θ0n identified by the moment restrictions (4.1). We want to
allow for drifting Υn in order to (i) address the uniformity issue by letting θ01n change arbitrarily
with n; (ii) incorporate the MME framework, under which the distribution of εi ≡ εin necessarily
drifts. Note that we also let the other features of the distribution of (X∗i , Si) drift but suppress
additional indexing by n for simplicity of notation.

Notation. C denotes a generic constant uniform over Υn or, when specified, over a particular set
of Υn. For example, E [‖g(X∗i , Si, θ0n)‖] < C should be read as supΥn EΥn [‖g(X∗i , Si, θ0n)‖] < C,
where the supremum is taken over all possible Υn (effectively, over all possible distributions
of (X∗i , Si) and the corresponding θ0n) and EΥn denotes the expectation under Υn. Analo-
gously to the standard o(·), O(·), op(·), and Op(·) notations, we use on(·), On(·), op,n(·), and
Op,n(·), which also should be treated as uniform in Υn. For example, ηn = op,n(1) means that
∀ε > 0 lim supn→∞ supΥn PΥn (||ηn|| > ε) = 0, and ηn = Op,n(1) means that ∀ε > 0 ∃C > 0:
lim supn→∞ supΥn PΥn (||ηn|| > C) < ε.

Also, analogously to the previously introduced notations, we let a∗i (β) ≡ a(X∗i , Si, β) and
a∗(β) ≡ E[a∗i (β)]. Similarly, let Ω∗aa (β) ≡ E[a∗i (β)a∗i (β)′]. However, note that, unlike before,
we use a∗ ≡ a(θ0n, 0) and Ω∗aa ≡ Ω∗aa(θ0n, 0), so it plugs in θ = θ0n and γ = 0 (if γ is a part of β).

6.1 Asymptotic normality of the MME estimator under semi-strong and strong
identification

In this subsection, we provide a set of low-level conditions, which ensure asymptotic normality of
the MME estimator under semi-strong and strong identification of γ0n.

Assumption 1 (DGP). {(X∗i , S′i)}ni=1 are i.i.d. and satisfy the moment restrictions (4.1).

Assumption 2 (ME). For each n the measurement errors {εin}ni=1 are i.i.d., and Assumption
MME holds with L = 2M for some integer M > K + 1.

Assumption 1 and 2 formally reintroduce the MME framework. Assumption 2 also strengthens
previously introduced Assumption MME: it requires |εin/σn| to have 2M moments for some M >

K + 1.
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Assumption 3 (Parameter space). Θ ⊂ Rp and Γ ⊂ RK−1 are compact. In addition, Θ is convex,
θ0n ∈ Θ and γ0n ∈ Γ, and θ0n is bounded away from the boundary of Θ.

Assumption 3 is an analogue of the standard parameter space assumption. The standard as-
sumption θ0n ∈ int (Θ) should be strengthened since we allow θ0n to vary with the sample size: we
want to rule out sequences of θ0n, which approach the boundary of Θ arbitrarily closely. Unlike
θ0n, γ0n is potentially allowed to be on (or arbitrarily close to) the boundary of Γ.

Let X ⊆ R be some closed convex set containing the union of supports of X∗i and Xi, and
S = supp (Si)

Assumption 4 (Moment function).

(i) For every s ∈ S, G(K)
x (x, s, θ) exists and is continuous on X ×Θ;

(ii) There exist functions b1, b2, bG1, bG2 and a δ > 0 such that for all x, x′ ∈ X , (s, θ) ∈ S ×Θ

∥∥∥g(K)
x (x′, s, θ)− g(K)

x (x, s, θ)
∥∥∥ 6 b1(x, s, θ)|x′ − x|+ b2(x, s, θ)|x′ − x|M−K (6.1)

and for all x, x′ ∈ X , (s, θ) ∈ S ×Bδ(θ0)∥∥∥G(K)
x (x′, s, θ)−G(K)

x (x, s, θ)
∥∥∥ 6 bG1(x, s, θ)|x′ − x|+ bG2(x, s, θ)|x′ − x|M−K (6.2)

Assumption 4 is a smoothness requirement. Condition (ii) allows to bound the effect of the
measurement error on the moment function and its Jacobian. Specifically, Eq. (6.1) ensures that
the remainder in (4.2) is O(σK+1

n ) and, hence, helps to establish that the corrected moment function
ψ satisfy the moment restrictions in the form of (4.6).

Remark 19. If g(x, s, θ) is a sufficiently smooth function, there are simple conditions, which
guarantee that condition (ii) is satisfied. For example, for (6.1) to be satisfied, it is sufficient to
require g(J)

x (x, s, θ) to be bounded on X , where K < J 6M . Indeed,∥∥∥g(K)
x (x′, s, θ)− g(K)

x (x, s, θ)
∥∥∥ 6 J−K−1∑

j=1

1
j!

∥∥∥g(K+j)
x (x, s, θ)

∥∥∥ |x′ − x|j
+ 1

(J −K)!

∥∥∥g(J)
x (x̃, s, θ)

∥∥∥ |x′ − x|J−K ,
for some x̃, which lies between x and x′. Hence, one may take

b1(x, s, θ) = b2(x, s, θ) =
J−K−1∑
j=1

1
j!

∥∥∥g(K+j)
x (x, s, θ)

∥∥∥+ 1
(J −K)! sup

x∈X

∥∥∥g(J)
x (x, s, θ)

∥∥∥ .
Therefore Assumption 4 (ii) is satisfied if (i) g(J)

x (x, s, θ) exists on X for some K < J 6 M and
supx∈X

∥∥∥g(J)
x (x, s, θ)

∥∥∥ <∞ for every (s, θ) ∈ S ×Θ (Condition (6.1)); (ii) G(JG)
x (x, s, θ) exists on X

for some K < JG 6 M and supx∈X
∥∥∥G(JG)

x (x, s, θ)
∥∥∥ <∞ for every (s, θ) ∈ S ×Bδ(θ0n) (Condition

(6.2)).

Assumption 5.
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(i) for some η > 0,

E
[
sup
θ∈Θ

(
K∑
k=0

(∥∥∥g(k)∗
xi (θ)

∥∥∥1+η
+
∥∥∥G(k)∗

xi (θ)
∥∥∥)+ b∗1i(θ) + b∗2i(θ)

)
+ ‖g∗i (θ0n)‖2+η + ‖G∗i (θ0n)‖1+η

]
< C;

(ii) for some C > 0, C ≤ λmin
(
Ω∗gg

)
for Ω∗gg ≡ E [g∗i (θ0n)g∗i (θ0n)′];

(iii) for some δ > 0, vec (G∗i (θ)) is a.s. differentiable with respect to (w.r.t.) θ on Bδ(θ0n) and

E
[

sup
θ∈Bδ(θ0n)

(
K∑
k=0

∥∥∥g(k)∗
xi (θ)

∥∥∥2
+ b∗21i (θ) + b∗22i (θ) + b∗G1i(θ) + b∗G2i(θ)

+ ‖g∗i (θ)‖ ‖G∗i (θ)‖+ ‖∇θvec (G∗i (θ))‖
)]

< C;

(iv) supβ∈B
∥∥∥Ξ̂(β)− Ξ(β)

∥∥∥ = op,n(1), where Ξ(β) is a symmetric matrix satisfying 0 < 1/C <

infβ∈B λmin(Ξ(β)) 6 λmax(Ξ(β)) < C, and, for some δ > 0, supβ∈Bδ(β0)

∥∥∥∇βvec(Ξ̂(β))
∥∥∥ =

Op,n(1).

Assumption 5 is a collection of low-level regularity conditions. Note that Condition (iv) allows
the weighting matrix Ξ̂ to be potentially a function of β, covering the standard continuously updated
GMM with Ξ̂CUE(β) =

(
Ω̂ψψ(β)

)−1
. Note that, if Ξ̂ does not depend on β, Condition (iv) simplifies

to the standard consistency requirement: Ξ̂ = Ξ + op,n(1), where Ξ is a symmetric matrix with the
eigenvalues bounded from zero and above.

Remark 20. Thanks to the MME framework and Assumption 4, the effect of the measurement
error is localized. Hence, the asymptotic properties of the estimators and tests depend on the
distribution of (X∗i , Si) only, and the effect of εin (i.e., the magnitude of the EIV bias) is fully
captured by its (first K) moments. As a result, we can formulate the regularity conditions in terms
of the true data (X∗i , Si), which greatly increases transparency of the assumptions and simplifies
the exposition.

Assumptions 1-5 are the basic set of primitive conditions specifying the framework that we will
rely on throughout the rest of the paper. Next, we consider the sufficient conditions for asymptotic
normality of θ̂.

First, we discuss the issue of local identification. As pointed out in the previous section, local
identification of β0n is controlled by the Jacobian of the moment condition Ψ = (Ψθ,Ψγ). Note that,
in the MME framework, the effect of εin on Ψ vanishes asymptotically, and we have Ψθ = G∗+on(1)
and Ψγ = Ψ∗γ + on(1), where Ψ∗γ =

(
−g(2)∗

x , . . . ,−g(K)∗
x

)
. Hence, for β0n to be locally identified,

the limiting Jacobian

Ψ∗ =
(
G∗,−g(2)∗

x , . . . ,−g(k)∗
x

)
,
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must have full column rank, or, alternatively, we require λmin(Ψ∗′Ψ∗) > C > 0. In this case, the
standard (pointwise) GMM asymptotic theory applies: the distribution of β̂ is given by (4.8) and
the standard GMM tests and confidence intervals are valid. However, as we have seen, g(k)∗

x may
be equal to 0 and, consequently, the rank condition could be violated for some DGPs of interest.
To address this issue and facilitate the analysis, we assume that identifiability of γ0n is controlled
by θ01n in the following sense.

Assumption 6 (Strong local ID). For all δ > 0, ∃Cδ > 0 such that, for {Υn} satisfying ‖θ01n‖ > δ,
λmin(Ψ∗′Ψ∗) > Cδ.

Assumption 7 (Semi-strong local ID).

(i) For {Υn} satisfying ‖θ01n‖ 6 δn with any δn ↓ 0, g(k)∗
x = A∗kθ01n + on(‖θ01n‖) for some

uniformly bounded matrices A∗k for k ∈ {2, . . . ,K}.

(ii) There exists δ0 > 0 such that for all {Υn} satisfying ‖θ01n‖ 6 δ0: λmin(Ψ∗′AΨ∗A) > CA > 0 for
Ψ∗A ≡ (G∗, A∗2, . . . , A∗K);

(iii) g(k)
x − g(k)∗

x = on(‖θ01n‖) for k ∈ {2, . . . ,K}.

Assumption 6 defines the strong identification part of the true parameter space: once ‖θ01n‖
is bounded away from 0, the standard local identification condition is satisfied and the textbook
GMM asymptotic theory applies: β̂ is asymptotically normal and follows (4.8). Its asymptotic
variance Σ can be consistently estimated, and the standard GMM tests (e.g., Wald, LM, and QLR)
are uniformly valid over this part of the true parameter space. Note that Assumption 6 also ensures
that, if ‖θ01n‖ is bounded away from zero, then so are

∥∥∥g(k)∗
x

∥∥∥, k ∈ {2, . . . ,K}.
Assumption 7 (i) introduces θ01n = 0 as a point of γ0n identification failure and specifies the

behavior of g(k)∗
x , k ∈ {2, . . . ,K}, in its neighborhood: when ‖θ01n‖ goes to zero, these derivatives

can be approximated by linear functions of θ01n. This assumption allows us to explicitly specify the
parts of the true parameter space, for which γ0n is weakly identified. For example, DGP sequences
satisfying n1/2 ‖θ01n‖ → C with fixed C ∈ R are classical weak identification sequences like the
ones defined in Andrews and Cheng (2012). Under sequences of this type, the nuisance parameter
γ0n is weakly identified and cannot be consistently estimated and, as a result, the estimator β̂0n

has a non-standard asymptotic distribution.
At the same time, Assumption 7 (ii) allows to restore consistency of γ̂ and asymptotic normality

of β̂0n for DGP sequences satisfying ‖θ01n‖ → 0 and n1/2 ‖θ01n‖ → ∞. Such DGP sequences are
called semi-strong identification sequences (Andrews and Cheng, 2012). Under these sequences,
‖θ01n‖ is allowed to converge to 0, the point of γ0n identification failure, but slowly enough so γ̂
is still consistent for γ0n. However, unlike in the standard strong identification scenario, the rate
of convergence of γ̂ is no longer n1/2 but n1/2 ‖θ01n‖, so n1/2 ‖θ01n‖ (γ̂ − γ0n) = Op,n(1).16 More-
over, once scaled appropriately, the joint asymptotic normality of θ̂ and γ̂ still holds. Specifically,

16This reduces to the standard
√
n-consistency of γ̂ if ‖θ01n‖ is bounded away from zero.
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the distribution of n1/2
(
(θ̂ − θ0n)′, ‖θ01n‖ (γ̂ − γ0n)′

)′
can be (asymptotically) approximated by a

standard normal with a well defined variance-covariance matrix.
Note that Assumption 7 (ii) is an analogue of the standard local identification condition. Indeed,

once ‖θ01n‖ converges to zero, the limiting Jacobian has the following approximation:

Ψ∗ = (G∗,−A∗2θ01n, . . . ,−A∗Kθ01n) + on(‖θ01n‖).

Then, after accounting for the slower rate of convergence for γ̂, the rescaled Jacobian takes the
(asymptotic) form of (

G∗,−A∗2
θ01n
‖θ01n‖

, . . . ,−A∗K
θ01n
‖θ01n‖

)
.

Assumption 7 (ii) guarantees that the rescaled Jacobian delivers local identification of the normal-
ized parameter vector regardless of the direction of θ01n

‖θ01n‖ (which is also important unless θ01n is
scalar).

Assumption 7 (iii) is a weak regularity condition. Intuitively, it ensures that, once ‖θ01n‖ is
small, not only the g(k)∗

x linearization reminder is on(‖θ01n‖), but also the difference between g(k)
x

and g(k)∗
x is on(‖θ01n‖). Consequently, we also have g(k)

x = A∗kθ01n + on(‖θ01n‖) for k ∈ {2, . . . ,K}.
Assumption 7 is not restrictive and can be verified in many models of interest. For example, in

the appendix, we verify it for the generalized linear model.
Assumptions 6 and 7 ensure local identification of θ0n under both strong and semi-strong iden-

tification of γ0n. The following assumption is their natural extension to global terms.

Assumption 8 (Global Identification). There exist functions ζθ(·), ζγ(·): R+ → R+ satisfying:

(i) for all {Υn}, for all θ ∈ Θ, γ ∈ Γ,

‖ψ∗(θ, γ)‖ > ζθ(‖θ − θ0n‖) + ζγ(‖θ01n‖ ‖γ − γ0n‖) + rn(θ, γ),

where supθ∈Θ,γ∈Γ rn(θ, γ) = on(1);

(ii) for any η > 0, infκ>η ζθ(κ) > 0 and infκ>η ζγ(κ) > 0.

Assumption 8 ensures global identification of θ0n (and γ0n when ‖θ01n‖ is bounded away from
zero). Condition (i) provides a bound on the norm of the population moment ‖ψ∗(θ, γ)‖ in the form
of the sum of ζθ(‖θ − θ0n‖) and ζγ(‖θ01n‖ ‖γ − γ0n‖) (and an asymptotically negligible reminder).
Then Condition (ii) becomes an identification condition: ‖ψ∗(θ, γ)‖ can only be small when both
‖θ − θ0n‖ and ‖θ01n‖ ‖γ − γ0n‖ are small. Again, to account for a possible identification failure,
‖γ − γ0n‖ is multiplied by the factor ‖θ01n‖, which controls the strength of identification of γ0n.

The following theorem establishes asymptotic normality of the MME estimator under both
strong and semi-strong identification of γ0n.

Theorem 2 (Asymptotic Normality). (i) Suppose 0K−1 ∈ int (Γ). Also suppose Q̂(θ̂, γ̂) 6

infθ∈Θ,γ∈Γ Q̂(θ, γ) + op,n(1) and ∇βQ̂(β̂) = op,n(n−1/2). Then, under Assumptions 1-6, 8, for
all {Υn} satisfying ‖θ01n‖ > δ for any fixed δ > 0, the asymptotic distribution of β̂ is given by
(4.8),
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(ii) Moreover, if we suppose Q̂(θ̂, γ̂) 6 infθ∈Θ,γ∈Γ Q̂(θ, γ)+Op,n(n−1) and ∇βQ̂(β̂) = op,n(n−1),
then, under additional Assumption 7, the same result still holds for all {Υn} satisfying ‖θ01n‖ >
Cn−ωL for any fixed C > 0 and 0 < ωL < 1/2.

Part (i) is a standard result: asymptotic normality of the MME estimator θ̂ under “textbook”
conditions was also previously demonstrated in Evdokimov and Zeleneev (2016). Once ‖θ01n‖ is
assumed to be bounded away from zero, the classical local identification condition is satisfied,
and the standard GMM asymptotic approximations and tests are (uniformly) valid. Note that, to
ensure that θ̂ is asymptotically normal, we need to make an additional assumption on Γ to avoid
the parameter on the boundary problem. Since γ0n → 0, it is sufficient to require 0K−1 ∈ int (Γ)
in order to make sure that γ0n is bounded away from the boundary of the optimization parameter
space Γ.

Part (ii) extends this result to the semi-strong identification region of the true parameter space.
It turns out that the same asymptotic approximation (4.8) remains valid even when ‖θ01n‖ is
allowed to shrink towards zero, provided that the speed of that convergence is not too fast (slower
than the

√
n rate). This means that, once we restrict Υn to satisfy ‖θ01n‖ > Cn−ωL with any fixed

ωL ∈ (0, 1/2), the standard tests still remain uniformly valid.

Testing a linear hypothesis about β0n

Consider a linear hypothesis about β0n: H0 : λ′β0n = v against Ha : λ′β0n 6= v for some fixed
non-zero λ ∈ Rp+K−1 and hypothesized v ∈ R. Theorem 2 suggests that H0 can be tested by using
the standard t-statistic

t ≡ n1/2(λ′β̂ − v)√
λ′Σ̂λ

,

where Σ̂ is a standard estimator of the asymptotic variance given by

Σ̂ = (Ψ̂′Ξ̂Ψ̂)−1Ψ̂′Ξ̂Ω̂ψψΞ̂Ψ̂(Ψ̂′Ξ̂Ψ̂)−1, Ψ̂ = Ψ(β̂), Ξ̂ = Ξ̂(β̂). (6.3)

Under the null, the t-statistic converges in distribution to N(0, 1) for all DGP sequences allowed
in Theorem 2, which is formalized by the following lemma:

Lemma 1. (i) For any fixed λ ∈ Rp+K−1, λ 6= 0, under hypotheses of Theorem 2 Part (i), for all
{Υn} satisfying ‖θ01n‖ > δ for any fixed δ > 0,

n1/2λ′(β̂ − β0n)√
λ′Σ̂λ

d→ N(0, 1),

where Σ̂ is given by (6.3).
(ii) Under hypotheses of Theorem 2 Part (ii), the same result still holds for all {Υn} satisfying

‖θ01n‖ > Cn−ωL for any fixed C > 0 and 0 < ωL < 1/2.

Hence, under hypotheses of Theorem 2, the standard t-test is uniformly valid over strong and
semi-strong identification parts of the true parameter space.
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Remark 21. When ‖θ01n‖ is bounded away from zero (strong identification), the asymptotic vari-
ance Σ given in (4.9) has eigenvalues uniformly bounded from zero and above and can be consistently
estimated by Σ̂. However, once ‖θ01n‖ approaches zero, some components (corresponding to γ̂) of
Σ become unbounded. In this case, Σ̂ is no longer guaranteed to be consistent for Σ (however, in
the appendix, we show that, after a proper rescaling, it still converges to a well defined limiting
object). Nonetheless, we still have n1/2Σ̂−1/2(β̂ − β0n) → N(0, Ip+K−1) and, as demonstrated by
Lemma 1, the standard t-statistic based on Σ̂ is still uniformly valid under semi-strong identification
for testing a linear hypothesis about β0n. Unfortunately, this result cannot be straightforwardly
generalized to a nonlinear hypothesis about β0n if some components of γ0n are non-trivially in-
volved. However, Σθ, the θ̂ corresponding submatrix of Σ, still has eigenvalues bounded from zero
and above and is consistently estimated by Σ̂θ under semi-strong identification. Hence, if one is
interested in inference on θ0n (or a non-linear function of it), which is typically the parameter of
interest, the standard tests based on Σ̂θ remain uniformly valid under semi-strong identification of
γ0n. For example, in the next section, we establish this result for the standard Wald test based on
θ̂ and Σ̂θ.

6.2 Uniform square-root-n consistency

In this section, we demonstrate uniform
√
n-consistency of the MME estimator θ̂ over a wide range

of DGPs without assuming any particular strength of identification of γ0n. The following additional
assumption helps to establish the result.

Assumption 9 (Uniform
√
n-consistency).

(i) For some η > 0, for all {Υn} satisfying ‖θ01n‖ 6 δn with any δn ↓ 0, g(k)∗
x = A∗kθ01n +

On(‖θ01n‖1+η) for some uniformly bounded matrices A∗k for k ∈ {2, . . . ,K};

There exists δ0 > 0 such that for all {Υn} satisfying ‖θ01n‖ 6 δ0:

(ii) for some δ > 0, vec
(
G

(k)∗
xi (θ)

)
is a.s. differentiable w.r.t. θ on θ ∈ Bδ(θ0n) for k ∈ {2, . . . ,K}

and

E
[
K∑
k=2

(∥∥∥G(k)∗
xi (θ0n)

∥∥∥1+η
+ sup
θ∈Bδ(θ0n)

∥∥∥∇θvec (G(k)∗
xi (θ)

)∥∥∥)] < C;

(iii) infγ∈Γ λmin (Ψ∗A(γ)′Ψ∗A(γ)) > C > 0, where Ψ∗A(γ) ≡ (Ψ∗θ(θ0n, γ), A∗2, . . . , A∗K);

(iv) g(k)
x − g(k)∗

x = On(σn ‖θ01n‖) for k ∈ {2, . . . ,K}.

Assumption 9 is a stronger version of Assumption 7. Since Assumption 7 only ensures asymp-
totic normality of θ̂ under semi-strong identification, it is needed to be strengthened to ensure
uniform

√
n-consistency of the MME estimator over the entire true parameter space. Condition (i)

is analogous to Assumption 7 (i) but requires the linearization remainder to be On(‖θ01n‖1+η) in-
stead if on(‖θ01n‖). Similarly, Condition (iv) corresponds to Assumption 7 (iii) but the requirement
imposed on the reminder is strengthened from on(‖θ01n‖) to on(σn ‖θ01n‖).

36



Condition (iii) is a stronger analogue of Assumption 7 (ii). Indeed, Ψ∗A(0) = Ψ∗A, so Assumption
7 (ii) automatically follows from Condition (iii). It turns out that, under weak identification of
γ0n (i.e. when n1/2 ‖θ01n‖ is bounded), a weaker requirement infγ∈Γ λmin(Ψ∗θ(γ)′Ψ∗θ(γ)) > C > 0
ensures

√
n-consistency of θ̂. However, in order to ensure uniform

√
n-normality over the en-

tire true parameter space, it needs to be strengthened to cover both weak and semi-strong iden-
tification regimes. Condition (iii) addresses this issue by essentially merging the requirement
infγ∈Γ λmin(Ψ∗θ(γ)′Ψ∗θ(γ)) > C > 0 (needed under weak identification) with Assumption 7 (ii)
(needed under semi-strong identification).

Finally, Condition (ii) is an additional weak smoothness requirement. Assumption 9 is not
restrictive and can be verified in many cases of empirical interest. For example, in the appendix,
we provide a number of basic low-level conditions, which make sure that Assumption 9 is satisfied
for the generalized linear model (GLM).

Theorem 3 (Uniform
√
n-consistency). Suppose Q̂(θ̂, γ̂) 6 infθ∈Θ,γ∈Γ Q̂(θ, γ) +Op,n(n−1). Then,

under Assumptions 1-6, 8, 9, θ̂ − θ0n = Op,n(n−1/2).

Remark 22. Note that, for ‖θ01n‖ 6 Cn−1/2, γ̂ is inconsistent. In this case, the standard two-step
GMM optimal weighting matrix estimator Ξ̂GMM2 = Ω̂ψψ(θ̂p, γ̂p)−1 is also no longer consistent
since a preliminary step estimator γ̂p is not consistent. Hence, under weak identification, Ξ̂GMM2

violates Assumption 5 (iv) and may behave unstably. To address this issue, we propose using the
following regularized two-step optimal weighting matrix estimator

Ξ̂GMM2,R ≡ Ω̂ψψ(θ̂p, 0)−1,

where θ̂p is a preliminary first step MME estimator. Instead of using an estimate of γ0n, the
regularized estimator Ξ̂GMM2,R sets γ = 0, which is the limiting point of γ0n under the MME
asymptotics. Since Theorem 3 ensures θ̂p = θ0n+Op,n(n−1/2), we have Ξ̂GMM2,R

p→ Ω∗gg ≡ E [g∗i g∗′i ],
which is optimal under semi-strong and strong identification. Similarly, we introduce a regularized
version of the CUE weighting matrix estimator given by

Ξ̂CUE,R(θ) ≡ Ω̂ψψ(θ, 0)−1.

Unlike the standard CUE weighting matrix Ξ̂CUE(θ, γ) ≡ Ω̂ψψ(θ, γ)−1, Ξ̂CUE,R(θ) is not a function
of γ, which is instead fixed at 0. Similarly, under the MME asymptotics, Ξ̂CUE,R(θ) is (asymptot-
ically) optimal under semi-strong and strong identification and yet provides stability under weak
identification.

Remark 23. Also note that the proof of Theorem 3 allows to relax Assumption 5 (iv). A sufficient
condition needed to be imposed on the weighting matrix is

0 < 1/C < inf
θ∈Θ,γ∈Γ

λmin(Ξ̂(θ, γ)) 6 sup
θ∈Θ,γ∈Γ

6 λmax(Ξ̂(θ, γ)) < C

with probability approaching one. To get uniform
√
n-consistency of θ̂, we do not have to require

consistency of the weighting matrix like Assumption 5 (iv) does. Hence, despite being inconsistent
under weak identification, using the standard (non-regularized) estimator Ξ̂GMM2 does not threaten
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validity of Theorem 3 provided that the aforementioned condition is satisfied. Specifically, the
following condition ensures that λmin(Ω̂ψ,ψ is bounded away from zero with probability approaching
one despite γ̂ being inconsistent:

inf
γ∈Γ

λmin(Ω∗ψψ(θ0n, γ)) > C > 0, for all {Υn} : ‖θ01n‖ 6 δ0 for some δ0 > 0. (6.4)

Also note that Assumption 5 (iii) and boundedness of Γ 3 γ already imply that supγ∈Γ λmax(Ω∗ψψ(θ0n, γ)) <
C. Under these conditions, the eigenvalues Ξ̂GMM2 are bounded away from zero and above with
probability approaching one.

Remark 24. Similarly to the regularized weighting matrices, we also introduce a regularized
version of the asymptotic variance estimator Σ̂, which sets γ = 0 instead of plugging γ̂. Specifically,
we introduce

Σ̂R ≡ (Ψ̂′RΞ̂Ψ̂R)−1Ψ̂′RΞ̂Ω̂ψψ,RΞ̂Ψ̂R(Ψ̂′RΞ̂Ψ̂R)−1,

Ψ̂R ≡ Ψ(θ̂, 0), Ω̂ψψ,R ≡ Ω̂ψψ(θ̂, 0).

Since, under the MME asymptotics γ0n → 0, the regularized estimator of the asymptotic variance
Σ̂R is a valid alternative to Σ̂.

6.3 Uncorrected estimator

Theorem 3 establishes uniform
√
n-consistency of the MME estimator θ̂ regardless the strength of

identification of the nuisance parameter γ0n. However, when γ0n is weakly identified (for example,
under DGP sequences satisfying n1/2 ‖θ01n‖ → C with some finite C), the asymptotic normality of
θ̂ breaks down. In this case, the tests based on the asymptotic approximation (4.8) fail to control
size and/or suffer from power loss. Our objective is to develop inference tools, which are valid
under weak identification of the nuisance parameter.

The inference procedure we propose is based on the following insight. Consider a DGP sequence
with ‖θ01n‖ shrinking towards 0, the point of γ0n identification failure. Then Assumption 7 (i)
implies that E [g(Xi, Si, θ0n)] = On(σ2

n ‖θ01n‖). Hence, if ‖θ01n‖ goes to 0 fast enough in the sense
σ2
n ‖θ01n‖ = on(n−1/2), the uncorrected moment conditions satisfy E [g(Xi, Si, θ0n)] = on(n−1/2).

In this case, unlike in the strong identification scenario (when ‖θ01n‖ is bounded away from zero),
the measurement error correction is no longer needed: the asymptotic distribution of the GMM
estimator based on the uncorrected set of moment is not affected by the measurement error.

Specifically, we define the uncorrected estimator as

θ̂U = argmin
θ∈Θ

Q̂U(θ),

where

Q̂U(θ) = gU(θ)′Ξ̂U(θ)gU(θ).

Note that the uncorrected estimator θ̂U is based on a potentially different set of moments (and a
weighting matrix) compared to the MME estimator θ̂.
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Theorem 4. Suppose that (i) E [gU(X∗i , Si, θ0n)] = 0 and λmin(G∗′UΞUG
∗
U) > C > 0; (ii) θ̂U =

θ0n + op,n(1); (iii) Assumptions 4 and 5 are satisfied with gU and Ξ̂U as g and Ξ̂, respectively;
(iv) g(k)∗

Ux = A∗Ukθ01n + On(‖θ01n‖2) for some uniformly bounded A∗Uk for k ∈ {2, . . . ,K}; (v)
Q̂U(θ̂U) 6 infθ∈Θ Q̂(θU) + op,n(1) and ∇θQ̂U(θ̂U) = op,n(n−1/2). Then, under Assumptions 1 and
2, we have

n1/2Σ−1/2
U (θ̂U − θU0n) d→ N(0, Ip), ΣU ≡ (GUΞUG

′
U)−1G′UΞUΩgUgUΞUGU(G′UΞUGU)−1,

where

θU0n = θ0n +B∗Uθ01n +On(σ2
n ‖θ01n‖2),

B∗U ≡ −(G∗′UΞUG
∗
U)−1G∗′UΞU

K∑
k=2

E [εkin]
k! A∗Uk,

provided that n1/2
(∑K

k=2
E[εkin]
k! A∗Uk

)
θ01n = On(1) and n1/2σ2

n ‖θ01n‖2 = On(1).

Theorem specifies the asymptotic distribution of the uncorrected estimator θ̂U and provides
an explicit expression for its asymptotic bias due to the presence of the measurement error. The
asymptotic bias of θ̂U consists of two parts: the main linear part B∗Uθ01n and the quadratic re-
minder On(σ2

n ‖θ01n‖2). Also note that the last hypothesis of the theorem requires B∗Uθ01n +
On(σ2

n ‖θ01n‖2) = On(n−1/2), so the expression for the asymptotic bias is guaranteed to be valid
only if it is not “too large”.

Remark 25. The rest of the hypotheses of the theorem are standard. Condition (iv) is similar
to Assumption 7 (i). However, it strengthens the requirement on the linearization remainder from
on(‖θ01n‖) to On(‖θ01n‖2). This results in an explicit bound on the asymptotic bias remainder
equal to On(σ2

n ‖θ01n‖2).

Note that, if B∗Uθ01n + On(σ2
n ‖θ01n‖2) = on(n−1/2), θ̂U is asymptotically unbiased. As an-

nounced before, the leading bias term B∗Uθ01n can be bounded as On(σ2
n ‖θ01n‖), and this require-

ment reduces to σ2
n ‖θ01n‖ = o(n−1/2). However, in some special cases (e.g., NLIV), we may have

A∗Uk = 0, k ∈ {2, . . . ,K}. In this case, this requirement weakens to σ2
n ‖θ01n‖2 = on(n−1/2),

allowing for a substantially larger range of ‖θ01n‖.

Corollary 1. Suppose that the hypotheses of Theorem 4 are satisfied. Then, for {Υn}, satisfying
‖θ01n‖ 6 Cn−ωNZ for any fixed C > 0 and ωNZ > 1/2− 1/(K + 1), we have

n1/2Σ−1/2
U (θ̂U − θ0n) d→ N(0, Ip). (6.5)

Moreover, if A∗Uk = 0 for k ∈ {2, . . . ,K}, then the former statement can be strengthen to ωNZ >

1/4− 1/(2K + 2).

Corollary 1 provides the bounds on the possible value of ωNZ, under which θ̂U is asymptotically
unbiased, and the standard tests based on (6.5) and the asymptotic variance estimator

Σ̂U = (ĜUΞ̂UĜ
′
U)−1Ĝ′UΞ̂UΩ̂gUgUΞ̂UĜU(Ĝ′UΞ̂UĜU)−1 (6.6)

are valid.
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7 Uniformly Valid Inference and Adaptive Estimation

7.1 Asymptotic properties of the hybrid tests

In this section, we formally study asymptotic properties of the proposed hybrid tests in the context
of MME framework. We want to test

H0 : r(θ0n) = v vs H1 : r(θ0n) 6= v. (7.1)

We start with two tests TL and TNZ, which have correctly defined p-values pTL and pTNZ and
take the form φT = 1{pT < α} for T ∈ {TL, TNZ}, where α denotes the nominal level of the tests.
We also suppose that there exist some ωL and ωNZ such that (i) 0 < ωNZ < ωL < 1/2; (ii) TL

is (uniformly) valid for {Υn} satisfying ‖θ01n‖ > Cn−ωL ; (iii) TNZ is (uniformly) valid for {Υn}
satisfying ‖θ01n‖ 6 CnωNZ . Formally, TL and TNZ satisfy

lim sup
n→∞

sup
Υn:‖θ01n‖>Cn−ωL

EΥn [φTL ] 6 α, (7.2)

lim sup
n→∞

sup
Υn:‖θ01n‖6Cn−ωNZ

EΥn [φTNZ ] 6 α, (7.3)

for all C > 0.
Theorem 2 specifies the asymptotic distribution of θ̂ under semi-strong and strong identification

of γ0n. This result, along with the asymptotic variance estimator Σ̂L defined in (6.3), can be used
to construct a test TL, which would satisfy (7.2) with any ωL ∈ (0, 1/2).

Similarly, using the result of Corollary 1, it is straightforward to construct a test of (7.1) based
on the uncorrected estimator θ̂U, its asymptotic distribution (6.5) and the asymptotic variance
estimator Σ̂U as in (6.6). Such a test would satisfy (7.3) with any ωNZ > 1/2− 1/(K + 1) (or even
any ωNZ > 1/4− 1/(2K + 2) for certain uncorrected estimators, e.g. NLIV).

Example (Wald tests). As an example of TL, one can take a simple Wald test based on θ̂. Specif-
ically, let R(θ) ≡ ∇θr(θ) and R̂ ≡ R(θ̂). Then, the θ̂ based Wald statistics takes the form of

WL = n(r(θ̂)− v)′
(
R̂Σ̂θR̂

′
)−1

(r(θ̂)− v),

and the outcome and the p-value of TL can be taken as

φTL = 1{WL > χ2
dr,1−α} = 1{pTL < α}, pTL = 1− Fχ2

dr
(WL), (7.4)

where dr ≡ dim(r(θ0n)), and χ2
dr,1−α and Fχ2

dr
denote the 1 − α quantile and the CDF of a χ2

dr
,

respectively. As mentioned before, such a test satisfies (7.2) with any ωL ∈ (0, 1/2).
TNZ can be constructed in the same way but with θ̂U taking place of θ̂. Specifically, the

corresponding test statistic is given by

WU = n(r(θ̂U)− v)′
(
R̂UΣ̂UR̂

′
U

)−1
(r(θ̂U)− v)

with R̂U ≡ R(θ̂U). The outcome and the p-value of the test analogously take the form of

φTU = 1{WU > χ2
dr,1−α} = 1{pTU < α}, pTU = 1− Fχ2

dr
(WU). (7.5)
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Such a test would satisfy (7.3) with any ωL > 1/2− 1/(K + 1).

The tests TL and TNZ are adaptively combined based on the inferred strength of identification
measured by the following identification-category-selection statistic:

ÂICS = (nθ̂′1V̂ −1
11 θ̂1/p1)1/2, (7.6)

where θ̂1 is the MME estimator of θ01n, p1 ≡ dim(θ1), and V̂11 is a symmetric positive definite
scaling matrix, which needs to satisfy the following regularity conditions.

Assumption 10. V̂11 is a symmetric positive definite matrix and

(i) 0 < 1/C < λmin(V̂11) for some C > 0 with probability approaching one uniformly;

(ii) for all {Υn} satisfying ‖θ01n‖ > Cn−ωL with any fixed C > 0, λmax(V̂11) is uniformly bounded
with probability approaching one.

Condition (i) ensures that V̂ −1
11 is uniformly bounded with probability one, and Condition (ii)

ensures that, with probability approaching one, λmin(V̂ −1
11 ) is uniformly bounded away from below

under semi-strong and strong identification. Since, for the MME estimator, we have θ̂1 = θ01n +
Op,n(n−1/2) (Theorem 3), these conditions ensure that (i) for some C > 0, ÂICS < C ‖θ01n‖ with
probability approaching one; (ii) for some C > 0, ÂICS > C ‖θ01n‖ with probability approaching
one for {Υn} satisfying ‖θ01n‖ > Cn−ωL . These conditions together ensure that ÂICS is “small”
under weak identification (when ‖θ01n‖ is relatively “small”) and “large” under strong identification
(when ‖θ01n‖ is relatively “large”).

Although, for example, an identity matrix as V̂11 clearly satisfies Assumption 10, it is desired to
choose V̂11 in a data dependent way, so it represents a measure of sample uncertainty about θ01n.
Then, two natural choices of V̂11 are Σ̂θ1 and Σ̂R,θ1 , which are the θ1-corresponding submatrices of Σ̂
and Σ̂R, respectively.17 Both Σ̂θ1 and Σ̂R,θ1 are consistent estimators of the asymptotic variance of
θ̂1 under semi-strong and strong identification. However, their properties under weak identification
are less clear. The following lemma guarantees that both the estimators satisfy Assumption 10.

Lemma 2. Under Assumptions 1-9, Σ̂R,θ1 satisfies Assumption 10 with any ωL ∈ (0, 1/2). If, in
addition, (6.4) is also satisfied, then Σ̂θ1 also satisfies Assumption 10 with any ωL ∈ (0, 1/2).

Remark 26. Unlike the regularized estimator Σ̂R, the non-regularized estimator Σ̂ depends on γ̂,
which is not consistent under weak identification. As a result, in this case, Σ̂ is also random. To
address this issue, Lemma 2 introduces an additional assumption to ensure that Σ̂ does not become
singular in this case.

Recall that the p-value the type-I hybrid test is given by

pITH = (1− λ̂L) max{pTNZ , pTL}+ λ̂LpTL , λ̂L = λL(ÂICS − κL,n). (7.7)

17With V11 = Σ̂θ1 , ÂICS is exactly the ICS statistic of Andrews and Cheng (2012).
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Then, the hybrid test rejects the null whenever its p-value is less than α, where α denotes its
nominal level. So, the outcome of T IH is given by

φITH = 1{pITH < α}. (7.8)

First, we establish the asymptotic properties of the type-I hybrid tests under the following high-level
condition.

Assumption 11. There exist some ωL and ωNZ, 0 < ωNZ < ωL < 1/2, such that:

(i) under the null, the tests TL and TNZ satisfy (7.2) and (7.3) (with any fixed C > 0), respectively;

(ii) Assumption 10 is satisfied;

(iii) nωL(n−1/2κL,n)→∞ as n→∞;

(iv) λL : R→ [0, 1] is continuous and weakly increasing, λL(z) = 0 for z 6 0, and limz→+∞ λL(z) =
1.

Theorem 5. Suppose that θ̂1 = θ01n +Op,n(n−1/2). Then, under Assumption 11:
(i) the hybrid test T IH given by (7.8) is asymptotically uniformly valid, i.e., under the null,

lim sup
n→∞

sup
Υn

EΥn [φITH ] 6 α;

(ii) moreover, for {Υn} satisfying ‖θ01n‖ /(n−1/2κL,n)→∞,
∣∣pITH

− pTL

∣∣ = op,n(1) (uniformly over
the hypothesized value v in (7.1)).

The first part of Theorem 5 establishes (asymptotic) uniform validity of the type-I hybrid test.
The second part says that T IH becomes essentially equivalent to TL whenever ‖θ01n‖ is substantially
larger than n−1/2κL,n. Note that, the slower κL,n increases as n → ∞, the more powerful the
hybrid test becomes since it switches to TL more aggressively. Therefore, if the test TL has certain
optimality properties under semi-strong and strong identification, then also the test T IH does (under
semi-strong and strong identification DGP sequences satisfying ‖θ01n‖ /(n−1/2κL,n) → ∞). In
particular, if n−1/2κL,n → 0 as n → ∞, then T IH is guaranteed to be asymptotically equivalent to
TL under strong identification (whenever ‖θ01n‖ is bounded away from zero).

Also recall that, for the type-II hybrid test T IIH , the p-value is given by

pIITH = (1− λ̂NZ − λ̂L) max{pTNZ , pTL}+ λ̂NZpTNZ + λLpTL , (7.9)

λ̂NZ ≡ λNZ(κNZ,n − ÂICS), λ̂L ≡ λL(ÂICS − κL,n).

Similarly, the outcome of T IIH is given by

φIITH = 1{pIITH < α}. (7.10)

The type-II hybrid test T IIH is a more aggressive version of T IH : it is equivalent to T IH when ÂICS >

κNZ,n but starts switching from the robust critical value max{pTNZ , pTL} to non-conservative pTNZ
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when ÂICS < κNZ,n (i.e. when ‖θ01n‖ appear to be relatively “small”). Similarly, we establish
asymptotic properties of T IIH under the following high-level assumption.

Assumption 12. Suppose that Assumption 11 is satisfied. In addition, suppose that:

(i) for 0 < κNZ,n < κL,n, we have nωNZ(n−1/2κNZ,n)→ 0 as n→∞;

(ii) λNZ : R→ [0, 1] is continuous and weakly increasing, λNZ(z) = 0 for z 6 0, and limz→+∞ λNZ(z) =
1.

Theorem 6. Suppose that θ̂1 = θ01n +Op,n(n−1/2). Then, under Assumption 12:
(i) the hybrid test T IIH given by (7.10) is asymptotically uniformly valid, i.e., under the null,

lim sup
n→∞

sup
Υn

EΥn [φIITH ] 6 α;

(ii) moreover, for {Υn} satisfying ‖θ01n‖ /(n−1/2κL,n)→∞,
∣∣pIITH

− pTL

∣∣ = op,n(1) (uniformly over
the hypothesized value v in (7.1));
(iii) finally, for {Υn} satisfying ‖θ01n‖ /(n−1/2κNZ,n) → 0,

∣∣pIITH
− pTNZ

∣∣ = op,n(1) (uniformly over
the hypothesized value v in (7.1)).

Similarly to T IH , the type-II hybrid test is (i) asymptotically uniformly valid and (ii) essentially
equivalent to TL when ‖θ01n‖ /(n−1/2κNZ,n) is large (i.e. under certain semi-strong and strong iden-
tification DGP sequences). However, it also becomes equivalent to TNZ (and inherits its optimality
properties), when ‖θ01n‖ is much smaller than n−1/2κNZ,n. Similarly, the faster κNZ,n grows, the
more powerful T IIH becomes. In particular, if κNZ,n →∞ as n→∞, then T IIH is guaranteed to be
asymptotically equivalent to TNZ under weak identification of γ0n (i.e. whenever n1/2 ‖θ01n‖ 6 C).

Note that, under the provided conditions, both the hybrid tests are theoretically demonstrated
to be asymptotically uniformly valid. At the same time, by design, T IIH is less conservative than
T IH and has more attractive power properties (both asymptotically and in finite samples). Hence,
judging by the asymptotic properties only, it may be appealing to conclude that the type-II hybrid
test T IIH is simply superior to the type-I hybrid test T IH . We want to stress that, although asymptotic
analysis provides valuable guidance on which test should be and, more importantly, which tests
should not be used in practice, one needs to take these results with a grain of salt. That being said,
we want to emphasize that, while T IIH has better power properties, the type-I hybrid test T IH has
less tuning parameters (and hence is less sensitive to their sometimes arbitrary choice) and, being
more conservative, is more likely to provide credible inference in finite samples.

So far, we have provided the high-level conditions under which the hybrid tests (based on some
abstract tests TL and TNZ) are demonstrated to be (asymptotically) uniformly valid. However, the
general results of Theorems 5 and 6 can also be straightforwardly applied in the MME framework.
For example, the following theorem establishes the same asymptotic properties of T IH and T IIH based
on the standard Wald tests given by (7.4) and (7.5) as TL and TNZ, respectively.

Theorem 7. Suppose that the hypotheses of Theorems 2, 3, and 4 are satisfied. Also, suppose
that (i) V̂11 = Σ̂R,θ1 or V̂11 = Σ̂θ1 and (6.4) holds; (ii) nωL(n−1/2κL,n) → ∞ as n → ∞ for
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some ωL ∈ (1/2 − 1/(K + 1), 1/2); (iii) λL satisfies Assumption 11 (iv); (iv) r(θ) is continuously
differentiable on Θ and λmin(RR′) > C > 0 with R ≡ R(θ0n). Finally, suppose that TL and TNZ

are given by (7.4) and (7.5), respectively. Then, the type-I hybrid test (7.8) satisfies the assertions
of Theorem 5. Suppose that, in addition, we also have (v) nωNZ(n−1/2κNZ,n) → 0 as n → ∞ for
some ωNZ satisfying 1/2 − 1/(K + 1) 6 ωNZ < ωL < 1/2, (vi) λNZ satisfies Assumption 12 (ii).
Then, the type-II hybrid test (7.10) satisfies the assertions of Theorem 6.

Remark 27. As pointed out before (see, e.g. Corollary 1), for certain estimators, e.g. NLIV, the
requirement in (v) can be substantially weakened to 1/4 − 1/(2K + 2) 6 ωNZ < ωL < 1/2, which
allows for substantially larger range of κNZ,n.

Remark 28. Although the suggested hybrid tests are similar to the procedures proposed in An-
drews and Cheng (2012), we want to stress some differences. Andrews and Cheng (2012) derive the
asymptotic distribution of a test statistic under certain weak, semi-strong, and strong identification
DGP sequences. Then, to run a test or to construct a confidence set, they propose a number of ways
to compute an identification robust critical value, which should be used (instead of the standard
critical value) to ensure uniform validity. Some of the suggested approaches (like in Sections 5.2 and
5.3 in Andrews and Cheng (2012)) adaptively compute the critical value depending on the inferred
strength of identification measured by the same ICS statistic ÂICS. This differs from the procedure
suggested in this paper: while Andrews and Cheng (2012) use the same test statistic and adjust
the critical value, our tests continuously switch between TL and TNZ depending on the value of
ÂICS. The second difference is that, unlike the approaches proposed in Andrews and Cheng (2012),
the type-II hybrid test T IIH not only reduces to the proper test TL under strong identification but
are also asymptotically equivalent to TNZ under weak identification (when n1/2 ‖θ01n‖ 6 C). This
means that we can perfectly discriminate between weak and strong identification sequences without
violating uniform validity of the tests. It becomes possible because the validity regions of the test
TNZ and TL have a non-trivial overlap when ωNZ < ωL (which is demonstrated to be the case in
the MME framework).

7.2 Specific choices of the basic tests

To construct any of the hybrid tests we described above, one needs to choose the tests TNZ and TL.
For example, as Theorem 4 suggests, the standard Wald test based on the uncorrected estimator
θ̂U is a natural candidate for TNZ. With a proper choice of moments, such a test can achieve local
semiparametric efficiency for {Υn} satisfying ‖θ01n‖ 6 Cn−ωNZ . Moreover, in a fully parametric
setting, θ̂U can be replaced by the ML estimator θ̂MLE (with the score constructing a set of just
identified moments). Then, a standard test based on θ̂MLE will be efficient in this setting. Finally,
as mentioned before, the NLIV estimator θ̂NLIV is a more conservative choice of θ̂U, which should
provide a better finite sample coverage but less informative inference.

The choice of TL is more intricate. One of the possibilities is build such a test on the MME
estimator θ̂. Under the hypotheses of Theorem 2, θ̂ is asymptotically normal and can be used to
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construct a standard Wald test. However, one of the standard premises needed to ensure asymptotic
normality requires the true parameter to be in the interior of the parameter space. Specifically,
Theorem 2 requires 0K−1 ∈ Γ, where 0K−1 is the limiting point of γ0n under moderate measurement
error asymptotics. This restrictions results in Γ to be chosen suboptimally. For example, consider
the simplest correction scheme with K = 2. In this case, γ0n = σ2

n/2 and, hence, it is a priori
known that γ0n is non-negative. This suggests that it is reasonable to choose Γ = [0, γ̄] for some
γ̄ > 0. Such a choice, however, would necessarily violate the requirement of Theorem 2: the
nuisance parameter γ0n can be on or arbitrary close to the boundary of Γ, and, consequently,
asymptotic normality of the MME estimator θ̂ would be threatened. It means that, in order to
secure asymptotic normality of the estimator, one should choose Γ = [γ, γ] for some γ < 0, with

∣∣γ∣∣
being sufficiently large, for the finite sample distribution of θ̂ not being distorted by the potential
boundary problem. Hence, either (i) Γ is chosen conservatively or (ii) asymptotic normality of θ̂ is
not ensured.18 Clearly, in the first scenario, useful information about the structure of γ0n is ignored.
This necessarily leads to less informative inference, especially when γ0n is close to 0 (relative to
the finite sample standard error). The same parameter on the boundary issue also applies in more
general setup (when K > 2).

Instead of modifying Γ a priori, it is still possible to exploit the natural restrictions on γ0n after
an asymptotically normal estimator (of both θ0n and γ0n) is obtained. One of the solutions is to
use the conditional likelihood ratio (CLR) test of Ketz (2018) specifically designed for subvector
inference with some of the parameters being on or close to the parameter space boundary. Al-
though the CLR test requires a numerical simulation of the critical values, (i) it is computationally
inexpensive even for K > 2 and (ii) the p-value of the test becomes directly available after the
simulation. Moreover, Ketz (2018) shows that the CLR test enjoys certain optimality properties if
the parameter of interest (r(θ0n) in our case) is scalar. Specifically, Ketz (2018) establishes that,
in the limiting Gaussian shift experiment, the CLR test is admissible and, building on the result of
Montiel Olea (2019), almost WAP (weighted average power) maximizing subject to the similarity
constraint. In the simulation study, Ketz (2018) demonstrates that the CLR test has competitive
power properties compared to the optimal test of Elliott et al. (2015) and the WAP-similar test of
Montiel Olea (2019). Consequently, the CLR test can be recommended as TL.

7.3 Adaptive Hybrid Estimation

The idea behind construction of the hybrid tests naturally extends to estimation: the MME estima-
tor θ̂ and the uncorrected estimator θ̂U can be adaptively combined based on the inferred strength
of identification. Specifically, we propose using the following convex combination of θ̂ and θ̂U as an
adaptive estimator:

θ̂A = Λ̂nθ̂ + (1− Λ̂n)θ̂U, Λ̂n ≡ Λ
(
ÂICS − κNZ,n
κL,n − κNZ,n

)
. (7.11)

18Note that, for estimation purposes, we recommend imposing restrictions on Γ.
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Here ÂICS is the same ICS statistic used to infer the strength of identification, and Λ : R → [0, 1]
is a weakly increasing function satisfying Λ(z) = 0 for all z 6 0, Λ(z) = 1 for all z > 1 and
|Λ(z′)− Λ(z)| 6 Λ |z′ − z| for all z′, z ∈ R. As before, κNZ,n and κL,n > κNZ,n are the thresholds,
which need to grow at certain rates as the sample size grows.

Note that θ̂A = θ̂U whenever ÂICS 6 κNZ,n: in this case the value of ‖θ01n‖ is sufficiently
small, so the asymptotic approximation θ̂U

a∼ N(θ0n,ΣU/n) applies (Theorem 4). Similarly, θ̂A =
θ̂ if ÂICS > κL,n: ‖θ01n‖ is large enough to guarantee that θ̂ a∼ N(θ0n,Σθ/n) is an adequate
approximation (Theorem 2). Finally, if ÂICS ∈ (κNZ,nκL,n), then both the approximations are valid
and we have (

θ̂

θ̂U

)
a∼ N

((
θ0n

θ0n

)
,

(
Σθ/n ΣθθU/n

Σ′θθU
/n ΣU/n

))
,

and, consequently, a convex combination of θ̂ and θ̂U is also (approximately) normally distributed.
Specifically, the asymptotic variance of the adaptive estimator θ̂A can be approximated by

Σ̂A = Λ̂2
nΣ̂θ + Λ̂n(1− Λ̂n)(Σ̂θθU + Σ̂′θθU) + (1− Λ̂n)2Σ̂U. (7.12)

Here Σ̂θ is the θ-corresponding submatrix of Σ̂ given in (6.3), Σ̂U as in (6.6), and Σ̂θθU is a
standard estimator of the asymptotic covariance of two GMM estimators θ̂ and θ̂U (an example is
provided in the appendix). The following theorem shows that approximation θ̂A

a∼ N(θ0n, Σ̂A/n)
is (asymptotically) uniformly valid irrespectively of the strength of identification and, hence, can
be used to draw uniformly valid inference on θ0n.

Theorem 8. Suppose that the hypotheses of Theorems 2, 3, and 4 are satisfied. Also, suppose that
(i) V̂11 = Σ̂R,θ1 or V̂11 = Σ̂θ1 and (6.4) holds; (ii) κNZ,n < κL,n satisfy nωL−1/2κNZ,n → ∞ and
nωNZ−1/2κL,n → 0 for some 1/2− 1/(K + 1) 6 ωNZ < ωL < 1/2. Then, we have, for any {Υn},

n1/2Σ̂−1/2
A (θ̂A − θ0n) d→ N(0, Ip),

where θ̂A and Σ̂A are given by (7.11) and (7.12).

Remark 29. Theorem 8 is, of course, also valid if, instead of Σ̂θ and Σ̂θθU , one uses their regularized
analogues Σ̂R,θ and Σ̂R,θθU .

Remark 30. Theorem 8 establishes uniform asymptotic normality of the adaptive estimator based
on the MME estimator θ̂ and the uncorrected estimator θ̂U in the MME context. In the appendix,
we also provide a general result, which can be used to establish asymptotic normality of hybrid
estimators based on some estimators θ̂L and θ̂NZ in a general context, i.e. when the variance of the
measurement error is potentially “large”.
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A.1 Proofs: “Standard” conditions

A.1.1 UC of the sample moment

Lemma A.1. Under Assumptions 1-5, supθ∈Θ,γ∈Γ
∥∥ψ(θ, γ)− ψ∗(θ, γ)

∥∥ = op,n(1).

Proof. For brevity, denote β ≡ (θ′, γ′)′ and B = Θ× Γ. By the triangle inequality,

sup
β∈B

∥∥ψ(β)− ψ∗(β)
∥∥ 6 sup

β∈B

∥∥ψ∗(β)− ψ∗(β)
∥∥+ sup

β∈B

∥∥ψ(β)− ψ∗(β)
∥∥ . (A.1)

First, we argue that supβ∈B ||ψ
∗(β)− ψ∗(β)|| = op,n(1). Note that

sup
β∈B

∥∥ψ∗(β)− ψ∗(β)
∥∥ 6 sup

θ∈Θ
‖g∗(θ)− g∗(θ)‖+

K∑
k=2

sup
γ∈Γ
|γk| sup

θ∈Θ

∥∥∥g(k)∗
x (θ)− g(k)∗

x (θ)
∥∥∥ ,

so, since Γ is bounded (Assumption 3), it suffices to show that

sup
θ∈Θ

∥∥∥g(k)∗
x (θ)− g(k)∗

x (θ)
∥∥∥ = op,n(1) (A.2)

for k ∈ {0, 2, . . . ,K}. This result is ensured by Lemma A.11. Indeed, note that the conditions of
Lemma A.11 are satisfied with g(k)∗

xi (θ) taking place of ηi(θ) for k ∈ {0, 2, . . . ,K}.
For the second term in (A.1), by the triangle inequality,

sup
β∈B

∥∥ψ(β)− ψ∗(β)
∥∥ 6 sup

θ∈Θ
‖g(θ)− g∗(θ)‖+

K∑
k=2

sup
γ∈Γ
|γk| sup

θ∈Θ

∥∥∥g(k)
x (θ)− g(k)∗

x (θ)
∥∥∥ .

By Assumption 4,

‖gn(θ)− g∗n(θ)‖ =
∥∥∥∥∥
K−1∑
k=1

1
n

n∑
i=1

1
k!g

(k)
x (X∗i , Si, θ)εki + 1

K!
1
n

n∑
i=1

g(K)
x (X̃∗i , Si, θ)εKi

∥∥∥∥∥
6

K∑
k=1

1
k!

1
n

n∑
i=1

∥∥∥g(k)
x (X∗i , Si, θ)

∥∥∥ |εi|k
+ 1
K!

(
1
n

n∑
i=1

b1(X∗i , Si, θ)|εi|K+1 + 1
n

n∑
i=1

b2(X∗i , Si, θ)|εi|M
)
.

where X̃i lies in between of X∗i and Xi and is allowed to be component specific. By Assumption 2,
Assumption 5 (i), Markov’s inequality, and E[|εi|k] = on(1) for k ∈ {1, . . . ,M}, each term following
the inequality sign is op,n(1) (uniformly in θ ∈ Θ). By a nearly identical argument,

sup
θ∈Θ

∥∥∥g(k)
x (θ)− g(k)∗

x (θ)
∥∥∥ = op,n(1)

for k ∈ {2, . . . ,K}. As a result, supβ∈B
∥∥ψ(β)− ψ∗(β)

∥∥ = op,n(1), and the conclusion of the Lemma
follows from equation (A.1). Q.E.D.
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A.1.2 Generic local consistency

Lemma A.2 (Generic consistency result).
Suppose Assumption 1 holds, and that for some δ > 0, (i) η(x, s, θ) is Lipschitz continuous of order
J in x on Bδ(θ0n), i.e. there is a collection of functions cj(x, s, θ) for j ∈ {1, . . . , J} such that,
for every x, x′ ∈ X and (s, θ) ∈ S × Bδ(θ0n), ‖η(x′, s, θ)− η(x, s, θ)‖ 6

∑J
j=1 cj(x, s, θ) |x′ − x|

j ;
(ii) E

[
supθ∈Bδ(θ0n) ‖cj(X∗i , Si, θ)‖

]
< C for j ∈ {1, . . . , J}; (iii) vec (η(X∗i , Si, θ)) is a.s. dif-

ferentiable w.r.t. θ on Bδ(θ0n); (iv) E
[
supθ∈Bδ(θ0n) ‖∇θvec (η(X∗i , Si, θ))‖

]
< C; (v) for some

η > 0, E
[
‖η(X∗i , Si, θ0n)‖1+η] < C; (vi) εi ⊥ (X∗i , Si) and E

[
|εi|J

]
= on(1). Then, for any

θ̃ = θ0n + op,n(1),

n−1
n∑
i=1

η(Xi, Si, θ̃) = E [η(X∗i , Si, θ0n)] + op,n(1).

In addition, E [η(Xi, Si, θ0)] exists and satisfies E [η(Xi, Si, θ0)] = E [η(X∗i , Si, θ0)] + on(1).

Proof. First, we argue that supθ∈Bδ(θ0n) ‖η(θ)− η∗(θ)‖ = op,n(1). Indeed,

sup
θ∈Bδ(θ0n)

‖η(θ)− η∗(θ)‖ 6
J∑
j=1

n−1
n∑
i=1

sup
θ∈Bδ(θ0n)

c∗j (θ)|εi|j = Op,n

 J∑
j=1

E
[
|εi|j

] = op,n(1),

where the inequality follows from condition (i), the first equality holds by condition (ii) and Markov’s
inequality, and the last equality holds by condition (vi). Note that, since θ̃−θ0n = op,n(1) implies θ̃ ∈
Bδ(θ0n) with probability approaching one uniformly, we have established that η(θ̃) = η∗(θ̃)+op,n(1).

The next step is to demonstrate η∗(θ̃) − η∗(θ0n) = op,n(1). Again, using θ̃ ∈ Bδ(θ0n) with
probability approaching one uniformly, we get

∥∥η∗(θ̃)− η∗(θ0n)
∥∥ 6 n−1

n∑
i=1

sup
θ∈Bδ(θ0n)

‖∇θvec (η(X∗i , Si, θ))‖
∥∥θ̃ − θ0n

∥∥ = op,n(1),

where the inequality follows from condition (iii), and the equality is ensured by condition (iv) along
with

∥∥θ̃ − θ0n
∥∥ = op,n(1). So, we have proved that η(θ̃) = η∗(θ0n) + op,n(1). Combining with the

previously obtained results, we obtain η(θ̃) = η∗(θ0n) + op,n(1). Finally, condition (v) ensures that
η∗(θ0n) = η∗(θ0n) + op,n(1), which completes the proof.

Finally,

η(Xi, Si, θ0) = η(X∗i , Si, θ0) + r(Xi, X
∗
i , Si, θ0),

where

‖r(Xi, X
∗
i , Si, θ0)‖ 6

J∑
j=1

cj(X∗i , Si, θ0) |εi|j .

Since the expectation of the right hand side of the last inequality exists and is equal to on(1), we
conclude E [η(Xi, Si, θ0)] = E [η(X∗i , Si, θ0)] + on(1). Q.E.D.
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A.1.3 Consistency of (some) sample analogues

Consider the following sample analogues based (conditional on θ and γ) estimators:

Ψ̂(θ, γ) ≡ n−1
n∑
i=1

Ψi(θ, γ),

Ω̂ψψ(θ, γ) ≡ n−1
n∑
i=1

ψi(θ, γ)ψi(θ, γ)′.

Lemma A.3. Suppose θ̃ − θ0n = op,n(1) and γ̃ = op,n(1). Then, under Assumptions 1, 2, 4, 5,
Ψ̂(θ̃, γ̃) ≡ Ψ(θ̃, γ̃) = Ψ∗ + op,n(1), Ω̂ψψ(θ̃, γ̃) ≡ n−1∑n

i=1 ψi(θ̃, γ̃)ψi(θ̃, γ̃)′ = Ω∗gg, and Ξ̂(θ̃, γ̃) =
Ξ + op,n(1). In addition, Ψ = Ψ∗ + on(1) and Ωψψ = Ω∗gg + op,n(1), where Ψ ≡ E [Ψi(θ0n, γ0n)] and
Ωψψ ≡ E [ψi(θ0n, γ0n)ψi(θ0n, γ0n)′].

Proof of Lemma A.3. We start with showing that Ψθ(θ̃, γ̃) = G∗ + op,n(1). Ψθ(θ̃, γ̃) = G(θ̃) −∑K
k=2 γ̃kG

(k)
x (θ̃). Since θ̃ − θ0n = op,n(1), θ̃ ∈ Bδ(θ0n) with probability approaching one uniformly.

Hence, with probability approaching one uniformly, by Assumptions, 2, 4 (i) and (iii),

∥∥∥G(k)
x (θ̃)

∥∥∥ 6 K∑
l=k

1
(l − k)!n

−1
n∑
i=1

sup
θ∈Bδ(θ0n)

∥∥∥G(l)∗
xi (θ)

∥∥∥ |εi|l−k
+ 1

(K − k)!

(
n−1

n∑
i=1

sup
θ∈Bδ(θ0n)

bθ∗G1i(θ) |εi|
K+1−k + n−1

n∑
i=1

sup
θ∈Bδ(θ0n)

bθ∗G2i(θ) |εi|
M−k

)
=Op,n(1) (A.3)

for k ∈ {2, . . . ,K}. This, along with γ̃ = op,n(1), implies that Ψθ(θ̃, γ̃) = G(θ̃) + op,n(1). The
next step is to show that G(θ̃) = G∗ + op,n(1). To prove that, we inspect that the hypotheses of
Lemma A.2 are satisfied for η(·) = G(·) and directly apply the results. Condition (i) with J = M
is guaranteed by Assumption 4. Conditions (ii)-(v) are ensured by Assumptions 5 (i) and (iii).
So, we conclude that Ψθ(θ̃, γ̃) = G∗ + op,n(1). By a very similar argument, Ψγk(θ̃) = −g(k)

x (θ̃) =
−g(k)∗

x + op,n(1), so Ψ(θ̃, γ̃) = Ψ∗ + op,n(1).
We also want to argue Ψ ≡ E [Ψi(θ0n, γ0n)] exists and satisfies Ψ = Ψ∗ + on(1). Note that

Lemma A.2 also guarantees that G = G∗ + on(1) and g
(k)
x = g

(k)∗
x + on(1) for k ∈ {0, . . . ,K}.

Hence, we have already established Ψγ = Ψ∗γ + on(1), so it is sufficient to show that Ψθ exists and
satisfies Ψθ = Ψ∗θ + on(1). Since Ψθi = Gi −

∑K
k=2 γ0knG

(k)
xi and γ0n = on(1), it would be sufficient

to show that E
[
G

(k)
xi

]
exists and is (uniformly) bounded. This can be straightforwardly expected

utilizing the same expansion of G(k)
xi around G(k)∗

xi as in (A.3).
Now we want to show that

Ω̂(θ̃, γ̃) = n−1
n∑
i=1

(
gi(θ̃)−

K∑
k=2

γ̃kg
(k)
xi (θ̃)

)(
gi(θ̃)−

K∑
k=2

γ̃kg
(k)
xi (θ̃)

)′
= Ω∗gg + op,n(1).

The first step is to show that n−1∑n
i=1 g

(k)
xi (θ̃)g(k′)

xi (θ̃) = Op,n(1) for any k, k′ ∈ {0, . . . ,K}. This is
ensured by Assumptions 2, 4, 5 (iii), and uniform consistency of θ̃ to θ0n (to show that one simply
needs to expand g(k)

xi (θ̃) and g(k′)
xi (θ̃) around g(k)∗

xi (θ̃) and g(k′)∗
xi (θ̃) respectively and bound the sum

as in (A.3)). This, along with γ̃ = op,n(1), implies that Ω̂(θ̃, γ̃) = n−1∑n
i=1 gi(θ̃)gi(θ̃)′ + op,n(1).
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To argue that n−1∑n
i=1 gi(θ̃)gi(θ̃)′ = Ω∗gg + op,n(1), we invoke the result of Lemma A.2 with η(·) =

g(·)g(·)′. Note that Assumptions 4 imply that η(·) is Lipschitz continuous of order 2M , so condition
(i) of Lemma A.2 is satisfied. Conditions (ii)-(v) are ensured by Assumption 5 (i) and (iii). As a
result, we conclude Ω̂(θ̃, γ̃) = Ω∗gg + op,n(1).

We also want to show Ωψψ ≡ E [ψi(θ0n, γ0n)ψi(θ0n, γ0n)] exists and satisfies Ωψψ = Ω∗gg +on(1).
Again, Lemma A.2 invoked with η(·) = g(·)g(·) guarantees that Ωgg ≡ E [gi(θ0n)gi(θ0n)′] = Ω∗gg +
on(1). Since

ψi(θ0n, γ0n)ψi(θ0n, γ0n)′ =
(
gi(θ0n)−

K∑
k=2

γ̃0kng
(k)
xi (θ0n)

)(
gi(θ0n)−

K∑
k=2

γ̃0kng
(k)
xi (θ0n)

)′

γ0n = on(1), it is sufficient to show E
[
gxi(θ0n)(k)gxi(θ0n)(k′)] exists and is (uniformly) bounded for

all k, k′ ∈ {0, . . . ,K}. Again, this can be established by utilizing the same argument as used above
to verify that n−1∑n

i=1 g
(k)
xi (θ̃)g(k′)

xi (θ̃) = Op,n(1). Thus, we have shown Ωψψ = Ω∗gg + on(1).
The next statement is Ξ̂(θ̃, γ̃) = Ξ+op,n(1). By uniform consistency, β̃ ∈ Bδ(β0) with probability

approaching one uniformly. Hence, with probability approaching one uniformly, by Assumption
5 (iv),

∥∥∥Ξ̂(β̃)− Ξ̂(β0)
∥∥∥ 6 supβ∈Bδ

∥∥∥∇βΞ̂(β)
∥∥∥ ∥∥β̃ − β0

∥∥. As a result, since supβ∈Bδ
∥∥∥∇βΞ̂(β)

∥∥∥ =
Op,n(1) and

∥∥β̃ − β0
∥∥ = op,n(1), Ξ̂(β̃) = Ξ̂(β0) + op,n(1). At the same time, also by Assumption 5

(iv), Ξ̂(β0)− Ξ(β0) = Ξ̂(β0)− Ξ = op,n(1), which delivers the desired result.
Q.E.D.

A.1.4 CLT for the corrected moment

Lemma A.4. Under Assumptions 1, 2, 4, 5, for every {Υn}, n1/2Ω∗−1/2
gg ψ(θ0n, γ0n) = n1/2Ω∗−1/2

gg g(θ0n)+
op,n(1) d→ N(0, Im) for some γ0n = on(1).

Proof of Lemma A.4. Recall β0n = (θ′0n, γ′0n)′. We also put γ0n = (γ02n, . . . , γ0Kn)′, and γ0kn =
aknσ

k
n for some an = (a2n, . . . , aKn)′ ∈ RK−1. Making use of Assumption 4 (i),

n1/2ψn(β0n) = n−1/2
n∑
i=1

g(X∗i , Si, θ0n) + n−1/2
n∑
i=1

g(1)
x (X∗i , Si, θ0n)(εin/σn)

+
K∑
k=2

σkn
k! n

−1/2
n∑
i=1

g(k)
x (X∗i , Si, θ0n)(εin/σn)k

−
K∑
k=2

γ0kn

K∑
l=k

σl−kn

(l − k)!n
−1/2

n∑
i=1

g(l)
x (X∗i , Si, θ0n)(εin/σn)l−k

+ σKn
K! n

−1/2
n∑
i=1

(g(K)
x (X̃i, Si, θ0n)− g(K)

x (X∗i , Si, θ0n))(εin/σn)K

−
K∑
k=2

γ0kn
σK−kn

(K − k)!n
−1/2

n∑
i=1

(g(K)
x (X̃ki, Si, θ0n)− g(K)

x (X∗i , Si, θ0n))(εin/σn)K−k

where, as usual, X̃i and X̃ki for k ∈ {2, . . . ,K} lie between X∗i and Xi. Plugging γ0kn = aknσ
k
n
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and rearranging the terms results in

n1/2ψn(β0n) = n−1/2
n∑
i=1

g(X∗i , Si, θ0n) + n−1/2
n∑
i=1

g(1)
x (X∗i , Si, θ0n)(εin/σn)

+
K∑
k=2

σknn
−1/2

n∑
i=1

g(k)
x (X∗i , Si, θ0n)

(
1
k! (εin/σn)k −

k∑
l=2

1
(k − l)! (εin/σn)k−laln

)

+ σKn
K! n

−1/2
n∑
i=1

(
g(K)
x (X̃i, Si, θ0n)− g(K)

x (X∗i , Si, θ0n)
)

(εin/σn)K

−
K∑
k=2

akn
σKn

(K − k)!n
−1/2

n∑
i=1

(
g(K)
x (X̃ki, Si, θ0n)− g(K)

x (X∗i , Si, θ0n)
)

(εin/σn)K−k.

Note that, by Assumption 5 (i) and (ii), E
[∥∥∥Ω∗−1/2

gg g(X∗i , Si, θ0n)
∥∥∥2+δ

]
< C. By that and Assump-

tions 1, for every {Υn},

n−1/2Ω∗−1/2
gg

n∑
i=1

g(X∗i , Si, θ0n) d→ N(0, Im).

To complete the proof, it is sufficient to show that all the remaining terms are op,n(1). By Assump-
tions 1, 2, 5 (iii), Chebyshev’s inequality guarantees

σnn
−1/2

n∑
i=1

g(1)
x (X∗i , Si, θ0n)(εin/σn) = op,n(1).

Next, Evdokimov and Zeleneev (2016) demonstrate that the system of equations

E
[

1
k! (εin/σn)k −

k∑
l=2

1
(k − l)! (εin/σn)k−laln

]
= 0, k ∈ {2, . . . ,K} (A.4)

has a unique solution ‖an‖ = On(1). Hence, for a properly chosen uniformly bounded an (and
γ0n → 0), the system (A.4) is satisfied. Then, for such a choice of an (and γ0n), Chebyshev’s
inequality coupled with Assumptions 1, 2, 5 (iii) guarantees that

σknn
−1/2

n∑
i=1

g(k)
x (X∗i , Si, θ0n)

(
1
k! (εin/σn)k −

k∑
l=2

1
(k − l)! (εin/σn)k−laln

)
= op,n(1)

for k ∈ {2, . . . ,K}.
Next, by Assumption 4 (ii),

σKn
K! n

−1/2
∣∣∣∣∣
∣∣∣∣∣
n∑
i=1

(
g(K)
x (X̃i, Si, θ0n)− g(K)

x (X∗i , Si, θ0n)
)

(εin/σn)K
∣∣∣∣∣
∣∣∣∣∣

6
1
K!

(
n1/2σK+1

n n−1
n∑
i=1

b1(X∗i , Si, θ0n)|εin/σn|K+1 + n1/2σMn n
−1

n∑
i=1

b2(X∗i , Si, θ0n)|εin/σn|M
)
.

By Assumption 2, n1/2σK+1
n = on(1) and n1/2σMn = on(1), and, by Assumptions 1, 2 and Assump-
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tion 5 (i),

n−1
n∑
i=1

b1(X∗i , Si, θ0n)|εin/σn|K+1 = Op,n(1),

n−1
n∑
i=1

b2(X∗i , Si, θ0n)|εin/σn|M = Op,n(1)

Hence, as a result,

σKn
K! n

−1/2
n∑
i=1

(
g(K)
x (X̃i, Si, θ0n)− g(K)

x (X∗i , Si, θ0n)
)

(εin/σn)K = op,n(1).

Applying the same reasoning and recalling ||an|| = On(1),

K∑
k=2

akn
σKn

(K − k)!n
−1/2

n∑
i=1

(
g(K)
x (X̃ki, Si, θ0n)− g(K)

x (X∗i , Si, θ0n)
)

(εin/σn)K−k = op,n(1),

and, recalling Assumption 5 (ii), we conclude

n1/2Ω∗−1/2
gg ψ(θ0n, γ0n) = n−1/2Ω−1/2

n∑
i=1

g(X∗i , Si, θ0n) + op,n(1) d→ N(0, Im).

Finally, note that, since ‖an‖ = On(1) and σn = on(1), γ0n = on(1). Q.E.D.

A.1.5 Consistency under strong and semi-strong identification

Lemma A.5. Suppose Q̂(θ̂, γ̂) 6 infθ∈Θ,γ∈Γ Q̂(θ, γ) + op,n(1). Then, under Assumptions 1-8,
θ̂ − θ0n = op,n(1). Moreover, under additional Assumption 6, for any fixed δ > 0, and for all
{Υn} satisfying ‖θ01n‖ > δ, γ̂ − γ0n = op,n(1).

Proof of Lemma A.5. First, by Lemma A.4, ψ(θ0n, γ0n) = Op,n(n−1/2). Hence, by Assumption 5
(iv), we have infθ∈Θ,γ∈Γ Q̂(θ, γ) 6 Op,n(n−1). Hence, since Q̂(θ̂, γ̂) 6 infθ∈Θ,γ∈Γ Q̂(θ, γ) + op,n(1),
using Assumption 5 (iv) again, we conclude

ψ(θ̂, γ̂) = op,n(1). (A.5)

Also, Lemma A.1 guarantees
∥∥∥ψ(θ̂, γ̂)− ψ∗(θ̂, γ̂)

∥∥∥ = op,n(1). This and (A.5) together imply ψ∗(θ̂, γ̂) =
op,n(1). Finally, using Assumption 8 (i), we conclude

ζθ

(∥∥∥θ̂ − θ0n
∥∥∥)+ ζγ(‖θ01n‖ ‖γ̂ − γ0n‖) = op,n(1).

Then, Assumption 8 (ii) ensures
∥∥∥θ̂ − θ0n

∥∥∥ = op,n(1) (completes the proof of the first statement)
and ‖θ01n‖ ‖γ̂ − γ0n‖ = op,n(1). Moreover, if ‖θ01n‖ is bounded away from zero, we automatically
obtain γ̂ − γ0n = op,n(1), which completes the proof of the second part. Q.E.D.
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A.1.6 Proof of Theorem 2 Part (i): asymptotic normality under strong identi-
fication

Proof of Theorem 2 Part (i). Lemma A.5 guarantees β̂−β0n = op,n(1), so, for any fixed δ > 0, β̂ ∈
Bδ(β0n) with probability approaching one uniformly, and, so we can consider a local expansion of
ψ(β̂) around β0n. At the same time, by the hypothesis of the theorem, ∇βQ̂(β̂) = D̂(β̂)Ξ̂(β̂)ψ(β̂) =
op,n(n−1/2), where the j-th column of D̂(β̂) is given by D̂j(β̂) ≡ Ψj(β̂) + 1

2 Ξ̂−1(β̂)∇βj Ξ̂(β̂)ψ(β̂)
with Ψj(β̂) denoting the j-th column of Ψ(β̂) for j ∈ {1, . . . , p+K − 1}. Hence,

D̂(β̂)′Ξ̂(β̂)
(
ψ(β0n) + Ψ(β̃)(β̂ − β0n)

)
= op,n(n−1/2), (A.6)

where, as usual, β̃ lies in between of β0n and β̂. Since γ0n = on(1) (see Lemma A.4), β̃ = β0+op,n(1),
so, by Lemma A.3, Ψ(β̃) = Ψ∗+ op,n(1). At the same time, by Lemma A.4, ψ(β0n) = Op,n(n−1/2).
Hence, since β̂ − β0n = op,n(1), we conclude that ψ(β̂) = ψ(β0n) + Ψ(β̃)(β̂ − β0n) = op,n(1).
Also note that, by Assumption 5 (iv), Ξ̂(β̃)−1 = Op,n(1) and ∇βj Ξ̂(β̂) = Op,n(1). Therefore,
D̂j(β̂) = Ψj(β̂)+op,n(1), and, invoking Lemma A.3, we conclude D̂(β̂) = Ψ∗+op,n(n−1/2). Finally,
also by Lemma A.3, Ξ̂(β̂) = Ξ + op,n(1), and we conclude D̂(β̂)′Ξ̂(β̂)Ψ(β̃) = Ψ∗′ΞΨ∗ + op,n(1).
Moreover, by Assumption 6,

(
D̂(β̂)′Ξ̂(β̂)Ψ(β̃)

)−1
is invertible with probability approaching one,

and, moreover,
(
D̂(β̂)′Ξ̂(β̂)Ψ(β̃)

)−1
= (Ψ∗′ΞΨ∗)−1 + op,n(1). Therefore, rearranging the terms in

(A.6) gives

n1/2(β̂ − β0n) = −
(
D̂(β̂)′Ξ̂(β̂)Ψ(β̃)

)−1
D̂(β̂)′Ξ̂(β̂)n1/2ψ(β0n) + op,n(1)

= −(Ψ∗′ΞΨ∗)Ψ∗′Ξn1/2ψ(β0n) + op,n(1)
= −(Ψ∗′ΞΨ∗)−1Ψ∗′Ξn1/2g(θ0n) + op,n(1),

where the last equality follows from Lemma A.4. Finally, we conclude that, for any {Υn}, n1/2Σ∗−1/2(β̂−
β0n) d→ N(0, Ip+K−1), where

Σ∗ = (Ψ∗′ΞΨ∗)−1Ψ∗′ΞΩ∗ggΞΨ∗(Ψ∗′ΞΨ∗)−1

has eigenvalues, which are uniformly bounded from below and above. Moreover, Lemma A.2 also
guarantees that Ψ = Ψ∗ + on(1), Ωψψ = Ω∗gg + on(1), and, as a result, Σ = Σ∗ + on(1). This allows
us to conclude that n1/2Σ−1/2(β̂ − β0n) d→ N(0, Ip+K−1) too. Q.E.D.

A.2 Proof of Theorem 2 Part (ii): asymptotic normality under
semi-strong identification

First, we provide high-level conditions (Assumption A.1), under which we show asymptotic normal-
ity of the estimator under semi-strong identification (Theorem A.1). Then we show Assumption
A.1 is implied under the hypotheses of Theorem 2 Part (ii).
Notation. Let S be a (p+K − 1)× (p+K − 1) matrix defined as

S ≡
(

Ip 0p×(K−1)
0(K−1)×p Sγ

)
,
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where Sγ is a (K − 1)× (K − 1) diagonal matrix with
(∥∥∥g(2)∗

x

∥∥∥ , . . . , ∥∥∥g(K)∗
x

∥∥∥)′ on its diagonal. Also
let Sn ≡ n1/2S.

A.2.1 Semi-strong ID asymptotic normality under high-level conditions

Assumption A.1 (Semi-strong and strong ID). For {Υn} satisfying ‖θ01n‖ > Cn−ωL for any fixed
C > 0 and 0 < ωL < 1/2:

(i) n1/2
∥∥∥g(k)∗
x

∥∥∥→∞ uniformly for k ∈ {2, . . . ,K};

(ii)
(
g

(k)
x − g(k)∗

x

)
/
∥∥∥g(k)∗
x

∥∥∥ = on(1) for k ∈ {2, . . . ,K};

(iii) lim infn→∞ infΥn λmin(B′B) > C > 0 with B ≡
(
G∗,−g(2)∗

x /
∥∥∥g(2)∗
x

∥∥∥ , . . . ,−g(K)∗
x /

∥∥∥g(K)∗
x

∥∥∥).
Theorem A.1 (Semi-strong and strong ID asymptotic normality). Suppose γ0 = 0 ∈ int (Γ).
Suppose also Q̂(θ̂, γ̂) 6 infθ∈Θ,γ∈Γ Q̂(θ, γ) + op,n(n−1) and ∇βQ̂(β̂) = op,n(n−1). Finally, suppose
θ̂ − θ0n = op,n(1). Then, under Assumptions 1-5, A.1, for all {Υn} satisfying ‖θ01n‖ > Cn−ωL for
any fixed C > 0 and 0 < ωL < 1/2,

Σ−1/2Sn(β̂ − β0n) d→ N(0, Ip+K−1), (A.1)

and

Σ = (B′ΞB)−1B′ΞΩ∗ggΞB(B′ΞB)−1. (A.2)

Moreover, it is also true that

Σ∗−1/2(β̂ − β0n) d→ N(0, Ip+K−1) (A.3)

where

Σ∗ = (Ψ∗′ΞΨ∗)−1Ψ∗′ΞΩ∗ggΞΨ∗(Ψ∗′ΞΨ∗)−1,

and

Σ−1/2(β̂ − β0n) d→ N(0, Ip+K−1). (A.4)

Proof of Theorem A.1. 1. The first step is to show n1/2
∥∥∥g(k)∗
x

∥∥∥ (γ̂k − γ0kn) = Op,n(1) for k ∈
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{2, . . . ,K}, so γ̂ − γ0n = op,n(1) (Assumption A.1 (i)). Note that

n1/2ψ(θ̂, γ̂) =n1/2ψ + Ψθ(θ̃, γ̂)n1/2(θ̂ − θ0n)−
K∑
k=2

(γ̂k − γ0kn)
(
n1/2g(k)

x + n1/2
(
g(k)
x − g(k)

x

))

=n1/2ψ + Ψθ(θ̃, γ̂)n1/2(θ̂ − θ0n)−
K∑
k=2

(γ̂k − γ0kn)
(
n1/2g(k)

x + n1/2
(
g(k)
x − g(k)

x

))
,

=n1/2ψ + Ψθ(θ̃, γ̂)n1/2(θ̂ − θ0n)−
K∑
k=2

g
(k)∗
x∥∥∥g(k)∗
x

∥∥∥n1/2
∥∥∥g(k)∗
x

∥∥∥ (γ̂k − γ0kn)

−
K∑
k=2

n1/2
∥∥∥g(k)∗
x

∥∥∥ (γ̂k − γ0kn)

g(k)
x − g(k)∗

x∥∥∥g(k)∗
x

∥∥∥ +
n1/2

(
g

(k)
x − g(k)

x

)
n1/2

∥∥∥g(k)∗
x

∥∥∥
 .

Note that Ψθ(θ̃, γ̂) = G(θ̃) −
∑
γ̂kG

(k)
x (θ̃). Lemma A.5 establishes θ̂ − θ0n = op,n(1) and,

consequently, θ̃ − θ0n = op,n(1). Then, as shown in Lemma A.3, G(θ̃) = G∗ + op,n(1), so

n1/2ψ(θ̂, γ̂) =n1/2ψ +G∗n1/2(θ̂ − θ0n)−
K∑
k=2

g
(k)∗
x∥∥∥g(k)∗
x

∥∥∥n1/2
∥∥∥g(k)∗
x

∥∥∥ (γ̂k − γ0kn)−
K∑
k=2

γ̂kG
(k)
x (θ̃)n1/2(θ̂ − θ0n)

−
K∑
k=2

n1/2
∥∥∥g(k)∗
x

∥∥∥ (γ̂k − γ0kn)

g(k)
x − g(k)∗

x∥∥∥g(k)∗
x

∥∥∥ +
n1/2

(
g

(k)
x − g(k)

x

)
n1/2

∥∥∥g(k)∗
x

∥∥∥
+ op,n(n1/2(θ̂ − θ0)).

We want to show that b̂n ≡ Sn(β̂ − β0n) = Op,n(1).

n1/2ψ(θ̂, γ̂) =n1/2ψ +Bb̂n −
K∑
k=2

γ̂kG
(k)
x (θ̃)n1/2(θ̂ − θ0n)

−
K∑
k=2

n1/2
∥∥∥g(k)∗
x

∥∥∥ (γ̂kn − γ0kn)

g(k)
x − g(k)∗

x∥∥∥g(k)∗
x

∥∥∥ +
n1/2

(
g

(k)
x − g(k)

x

)
n1/2

∥∥∥g(k)∗
x

∥∥∥
+ op,n(b̂n).

(A.5)

By Assumption 5 (iii), E
[∥∥∥g(k)

xi (θ0n)
∥∥∥2]

< C, so n1/2
(
g

(k)
x − g(k)

x

)
= Op,n(1), and hence by As-

sumptions A.1 (i) and (ii),

g
(k)
x − g(k)∗

x∥∥∥g(k)∗
x

∥∥∥ + Op,n(1)
n1/2

∥∥∥g(k)∗
x

∥∥∥ = op,n(1).

Moreover, since γ0k = on(1) and ‖γ̂k − γ0k‖ = op,n
(∥∥∥b̂n∥∥∥), and, as shown in Lemma A.3, G(k)

x (θ̃) =
Op,n(1),

K∑
k=2

γ̂kG
(k)
x (θ̃)n1/2(θ̂ − θ0n) =

K∑
k=2

(γ̂k − γ0k)G
(k)
x (θ̃)n1/2(θ̂ − θ0n) + op,n

(∥∥∥b̂n∥∥∥)
= op,n

(∥∥∥b̂n∥∥∥+
∥∥∥b̂n∥∥∥2)

.
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Finally, recall n1/2ψ = Op,n(1), and, hence, by the triangle inequality,∥∥∥n1/2ψ(θ̂, γ̂)
∥∥∥ > ∥∥∥Bb̂n∥∥∥− op,n (∥∥∥b̂n∥∥∥+

∥∥∥b̂n∥∥∥2)
−Op,n(1)

> CB
∥∥∥b̂n∥∥∥− op,n (∥∥∥b̂n∥∥∥+

∥∥∥b̂n∥∥∥2)
−Op,n(1),

where in the second inequality CB > 0 by Assumption A.1 (iii).
At the same time, since Q̂(θ̂, γ̂) < infθ∈Θ,γ∈Γ Q̂(θ, γ) + op,n(n−1), we have

CB
∥∥∥b̂n∥∥∥− op,n (∥∥∥b̂n∥∥∥+

∥∥∥b̂n∥∥∥2)
−Op,n(1) 6

∥∥∥n1/2ψ(θ̂, γ̂)
∥∥∥ 6 Op,n(1),

which implies b̂n = Op,n(1). Hence, θ̂− θ0 = Op,n(n−1/2), and n1/2
∥∥∥g(k)∗
x

∥∥∥ (γ̂k−γ0kn) = Op,n(1) for
k ∈ {2, . . . ,K}, so γ̂ − γ0n = op,n(1).
2. As in the proof of Theorem 2 Part (i), the FOC takes the form of

D̂(β̂)′Ξ̂(β̂)ψ(β̂) = op,n(n−1).

Multiplying both sides by S−1 and noting that n−1/2S−1 = on(1) (by Assumption A.1 (i)) gives

S−1D̂(β̂)′Ξ̂(β̂)ψ(β̂) = op,n(n−1/2).

Now we argue that

D̂(β̂)S−1 = B + op,n(1). (A.6)

Recall that the j-th column of D̂(β̂) is given by D̂j(β̂) ≡ Ψj(β̂) + 1
2 Ξ̂−1(β̂)∇βj Ξ̂(β̂)ψ(β̂) and

note that ψ(β̂)S−1 = n1/2ψ(β̂)n−1/2S−1 = op,n(1) since n1/2ψ(β̂) = Op,n(1). Then, D̂(β̂)S−1 =
Ψ(β̂)S−1 + op,n(1), where

Ψ(β̂) =
[
Ψθ(β̂),−g(2)

x (θ̂), . . . ,−g(K)
x (θ̂)

]
.

Note that for the first p columns of D̂(β̂)S−1 we have
(
Ψ(β̂)S−1

)
1:p

= G∗+op,n(1) = B1:p+op,n(1),

since β̂ − β0n = op,n(1). Then to establish that Ψ(β̂)S−1 = B + op,n(1), we need to verify that
g

(k)
x (θ̂)/

∥∥∥g(k)∗
x

∥∥∥ = g
(k)∗
x /

∥∥∥g(k)∗
x

∥∥∥ + op,n(1) for k ∈ {2, . . . ,K}. First, g(k)
x (θ̂) = g

(k)
x + Op,n(n−1/2).

Indeed,

n1/2(g(k)
x (θ̂)− g(k)

x ) = n1/2(g(k)
x − g(k)

x ) +G
(k)
x (θ̃)n1/2(θ̂ − θ0n) = Op,n(1),

since n1/2(θ̂ − θ0n) = Op,n(1) and G(k)
x (θ̃) = Op,n(1). Then, using Assumptions A.1 (i) and (ii),

g
(k)
x (θ̂)∥∥∥g(k)∗
x

∥∥∥ = g
(k)∗
x∥∥∥g(k)∗
x

∥∥∥ + g
(k)
x − g(k)∗

x∥∥∥g(k)∗
x

∥∥∥ + Op,n(n−1/2)∥∥∥g(k)∗
x

∥∥∥
= g

(k)∗
x∥∥∥g(k)∗
x

∥∥∥ + op,n(1).

Therefore, Ψ(β̂)S−1 = B + op,n(1), and equation (A.6) holds.
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In the analysis of remainders in equation (A.5) we have established that n1/2ψ(β̂) = n1/2ψ +
BSn(β̂ − β0n) + op,n(1), hence, the FOC simplifies as

B′Ξ(n1/2ψ +BSn(β̂ − β0n)) = op,n(1),

By Assumption A.1 (iii), B′ΞB is invertible and its inverse is uniformly bounded, so

Sn(β̂ − β0n) = −(B′ΞB)−1B′Ξn1/2ψ + op,n(1).

Finally, Lemma A.4 guarantees that n1/2Ω−1/2ψ
d→ N(0, Im), so

Σ−1/2Sn(β̂ − β0n) d→ N(0, Ip).

Then, we also want to show that

n1/2Σ∗−1/2(β̂ − β0n) d→ N(0, Ip). (A.7)

Indeed,

n1/2Σ∗−1/2(β̂ − β0n) = Σ∗−1/2S−1Σ1/2Σ−1/2Sn(β̂ − β0n)
= OΣ−1/2Sn(β̂ − β0n),

where O ≡ Σ∗−1/2S−1Σ1/2 is an orthogonal matrix: recall SΣ∗S = Σ, then

OO′ = Σ∗−1/2S−1ΣS−1Σ∗−1/2

= Σ∗−1/2Σ∗Σ∗−1/2

= Ip,

and, hence, the desired result holds.
Finally, we argue that

n1/2Σ−1/2(β̂ − β0n) d→ N(0, Ip). (A.8)

First, note that SΣS = Σ + on(1) = SΣ∗S + on(1) (see Lemma A.7 below). Let Q ≡ Σ−1/2Σ∗1/2,
and note that

n1/2Σ−1/2 (β − β0) = Qn1/2Σ∗−1/2 (β − β0) .

We argue that Q′Q = I + on (1), and Q′ = Q−1 + on (1). Indeed

Q′Q = Σ∗1/2Σ−1Σ∗1/2 = Σ∗1/2S (SΣS)−1 SΣ∗1/2.

Let Λ ≡ Σ∗1/2S. Note that Λ has full rank, and Λ′Λ = SΣ∗S has eigenvalues bounded away from
zero and infinity. Thus,

Q′Q = Λ (Λ′Λ + op,n (1))−1 Λ′ = Λ
{

(Λ′Λ)−1 + op,n (1)
}

Λ′

= Λ (Λ′Λ)−1 Λ′ + op,n (1) = I + op,n (1) .

Also, Q′ = Q−1 + op,n (1), since Q has singular values bounded away from zero and infinity. This,
along with (A.7), implies that (A.8) holds.
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Q.E.D.

A.2.2 Verification of Assumption A.1

Second, we show that high-level Assumption A.1 is implied by the following assumption.

Lemma A.6. Under Assumptions 1-5, Assumptions 6 and 7 imply Assumption A.1.

Proof of Lemma A.6. Verification of Assumption A.1 (i): Assumption 7 (i) implies that, for {Υn}
satisfying ‖θ01n‖ ↓ 0,

g(k)∗
x =

(
A∗k

θ01n
‖θ01n‖

+ on(1)
)
‖θ01n‖ ,

and Assumption 7 (ii) guarantees that there exists C̃ > 0 such that∥∥∥∥A∗k θ01n
‖θ01n‖

∥∥∥∥ > C̃

for k ∈ {2, . . . ,K} and for all {Υn} satisfying Cn−ωL 6 ‖θ01n‖ 6 δ0 for any fixed C > 0 and
0 < ωL < 1/2. Therefore, there exist δ1 ∈ (0, δ0) and C1 > 0, such that∥∥∥g(k)∗

x

∥∥∥ > C1 ‖θ01n‖

for all {Υn} satisfying Cn−ωL 6 ‖θ01n‖ 6 δ1. Hence, for all {Υn} satisfying Cn−ωL 6 ‖θ01n‖ 6 δ1,
we establish n1/2

∥∥∥g(k)∗
x

∥∥∥ → ∞. Also note that Assumption 6 guarantees that there exists C̃ > 0

such that for all {Υn} satisfying ‖θ01n‖ > δ1,
∥∥∥g(k)∗
x

∥∥∥ > C̃. As a result, n1/2
∥∥∥g(k)∗
x

∥∥∥ → ∞ for all
{Υn} satisfying ‖θ01n‖ > δ1. Hence, Assumption A.1 (i) is satisfied.

Verification of Assumption A.1 (ii): As established before, there exist δ1 > 0 and C1 > 0, such
that

∥∥∥g(k)∗
x

∥∥∥ > C1 ‖θ01n‖ for all {Υn} satisfying Cn−ωL 6 ‖θ01n‖ 6 δ1. Therefore, using 7 (iii), we
conclude

g
(k)
x − g(k)∗

x∥∥∥g(k)∗
x

∥∥∥ = on(1)

for all {Υn} satisfying Cn−ωL 6 ‖θ01n‖ 6 δ1. Also recall Assumption 6 guarantees that there exists
C̃ > 0 such that for all {Υn} satisfying ‖θ01n‖ > δ1,

∥∥∥g(k)∗
x

∥∥∥ > C̃. Then, since ‖θ01n‖ is bounded,
7 (iii) also implies

g
(k)
x − g(k)∗

x∥∥∥g(k)∗
x

∥∥∥ = on(1)

for all {Υn} satisfying ‖θ01n‖ > δ1.
Verification of Assumption A.1 (iii): First note that, since, for {Υn} satisfying Cn−ωL 6

‖θ01n‖ 6 δ1,
∥∥∥g(k)∗
x

∥∥∥ > C1 ‖θ01n‖ with C1 > 0, Assumption 7 (i) establishes

g
(k)∗
x∥∥∥g(k)∗
x

∥∥∥ = A∗kθ01n∥∥∥g(k)∗
x

∥∥∥ + on(1)

A-12



for {Υn} satisfying ‖θ01n‖ ↓ 0. Hence, for {Υn} satisfying ‖θ01n‖ ↓ 0,

B = BA + on(1) (A.9)

where

BA ≡

G∗,−A∗2θ01n∥∥∥g(2)∗
x

∥∥∥ , . . . ,−A
∗
Kθ01n∥∥∥g(K)∗
x

∥∥∥
 .

Note that Assumption 7 (ii) guarantees that there exists C̃ > 0

λmin
(
B̃′AB̃A

)
> C̃, (A.10)

where

B̃A ≡ (G∗,−A∗2θ01n/ ‖θ01n‖ , . . . ,−A∗Kθ01n/ ‖θ01n‖) .

for all {Υn} with Cn−ωL 6 ‖θ01n‖ 6 δ0. Also note that Assumption 7 (i) guarantees that there
exist δ2 ∈ (0, δ1) and C2 > 0 such that∥∥∥g(k)∗

x

∥∥∥ / ‖θ01n‖ 6 C2 for k ∈ {2, . . . ,K}

for {Υn} satisfying Cn−ωL 6 ‖θ01n‖ 6 δ2. Hence, for all {Υn} satisfying Cn−ωL 6 ‖θ01n‖ 6 δ2,

0 < C1 6
∥∥∥g(k)∗
x

∥∥∥ / ‖θ01n‖ 6 C2 for k ∈ {2, . . . ,K}. (A.11)

Note that

BA =

G∗,−A∗2θ01n/ ‖θ01n‖∥∥∥g(2)∗
x

∥∥∥ / ‖θ01n‖
, . . . ,−A

∗
Kθ01n/ ‖θ01n‖∥∥∥g(K)∗
x

∥∥∥ / ‖θ01n‖

 ,
and, consequently, by combining (A.10) and (A.11), we can establish that there exists CBA > 0
such that

λmin(B′ABA) > CBA

for all {Υn} satisfying Cn−ωL 6 ‖θ01n‖ 6 δ2. Finally, this, along with (A.9), guarantees that there
exists δ3 ∈ (0, δ2), such that

λmin(B′B) > CBA

for all {Υn} satisfying Cn−ωL 6 ‖θ01n‖ 6 δ3. Finally, Assumption 6 ensures that ∃Cδ3 > 0 such
that

λmin(B′B) > Cδ3

for all {Υn} satisfying ‖θ01n‖ > δ3. Therefore

λmin(B′B) > min{CBA , Cδ3}
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for all {Υn} satisfying Cn−ωL 6 ‖θ01n‖, which completes the proof. Q.E.D.

A.2.3 Proof of Theorem 2 Part (ii)

Proof of Theorem 2 Part (ii). Follows from Theorem A.1 and Lemma A.6. Q.E.D.

A.2.4 On asymptotic variance under semi-strong identification

Lemma A.7. Suppose that the hypotheses of Theorem A.1 are satisfied. Then SΣ̂S = Σ + op,n(1)
and SΣS = Σ + on(1).

Proof of Lemma A.7. Finally, we want to argue that SΣ̂S = Σ + op,n(1), where

Σ̂ = (Ψ̂′Ξ̂Ψ̂)−1Ψ̂′Ξ̂Ω̂ψψΞ̂Ψ̂(Ψ̂′Ξ̂Ψ̂)−1,

and Ψ̂ ≡ Ψ̂(β̂) ≡ Ψ(β̂). Then

SΣ̂S = (S−1Ψ̂′Ξ̂Ψ̂S−1)−1S−1Ψ̂′Ξ̂Ω̂Ξ̂Ψ̂S−1(S−1Ψ̂′Ξ̂Ψ̂S−1)−1 (A.12)

Note that we have already shown in the proof (of Theorem A.1) above that Ψ̂S−1 = Ψ(β̂)S−1 = B+
op,n(1), so S−1Ψ̂′Ξ̂Ψ̂S−1 = B′ΞB+op,n(1) with λmin(B′ΞB) bounded away from zero (Assumption
A.1 (iii)). Combined with Ω̂gg = Ωgg + on(1) (Lemma (A.3)), this delivers the result for Σ̂.

A similar reasoning can be used to show SΣS = Σ + on(1). Indeed, since we have

g
(k)
x∥∥∥g(k)∗
x

∥∥∥ = g
(k)∗
x∥∥∥g(k)∗
x

∥∥∥ + g
(k)
x − g(k)∗

x∥∥∥g(k)∗
x

∥∥∥
= g

(k)∗
x∥∥∥g(k)∗
x

∥∥∥ + on(1)

and Ψθ = Ψ∗θ + on(1) (see Lemma A.3), we again obtain ΨS−1 = B + on(1). Combining this with
Ωψψ = Ω∗gg + on(1) (Lemma A.3) and the same representation as in (A.12) delivers the result for
Σ. Q.E.D.

A.2.5 Proof of Lemma 1

Proof of Lemma 1. Let

µ = Σ1/2S−1λ∥∥∥Σ1/2S−1λ
∥∥∥ ,
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so ‖µ‖ = 1.

n1/2λ′(β̂ − β0n)√
λ′Σ̂λ

= λ′S−1Σ1/2Σ−1/2Sn(β̂ − β0n)√
λ′S−1Σ1/2

(
Σ−1/2SΣ̂SΣ−1/2

)
Σ1/2S−1λ

= µ′Σ−1/2Sn(β̂ − β0n)√
µ′(Ip+K−1 + op,n(1))µ

= µ′Σ−1/2Sn(β̂ − β0n) + op,n(1),

where the second equality holds since SΣ̂S = Σ+op,n(1) (Lemma A.7) and the eigenvalues of Σ are
bounded away from zero, and the third equality holds since Σ−1/2Sn(β̂ − β0n) = Op,n(1). Finally,
since ‖µ‖ = 1 and Σ−1/2Sn(β̂ − β0n) d→ N(0, Ip+K−1), the desired result follows. Q.E.D.

A.3 Proof of Theorem 3

A.3.1 Proof of Lemma A.8

Lemma A.8 (Uniform
√
n-consistency). Suppose Q̂(θ̂, γ̂) 6 infθ∈Θ,γ∈Γ Q̂(θ, γ) +Op,n(n−1). Then,

under Assumptions 1-8, 9, there exits ω̃0 ∈ (0, 1/2) such that for all {Υn}, satisfying ‖θ01n‖ 6
Cn−ω̃0 for any fixed C > 0, θ̂ − θ0n = Op,n(n−1/2).

Proof of Lemma A.8. Since θ̂ − θ0n = op,n(1) (Lemma A.5), we can linearize the sample moment
function again:

n1/2ψ(θ̂, γ̂) =n1/2ψ + Ψθ(θ̃, γ̂)n1/2(θ̂ − θ0n)−
K∑
k=2

(γ̂k − γ0kn)
(
n1/2g(k)

x + n1/2
(
g(k)
x − g(k)

x

))

=n1/2ψ + Ψ∗θ(θ0n, γ̂)n1/2(θ̂ − θ0n)−
K∑
k=2

(γ̂k − γ0kn)
(
n1/2g(k)

x + n1/2
(
g(k)
x − g(k)

x

))
+ op,n(n1/2(θ̂ − θ0n)),

where Assumption 9 (ii) helps to establish supγ∈Γ
∥∥Ψθ(θ̃, γ)−Ψ∗θ(θ0n, γ)

∥∥ = op,n(1).
Combining Assumption 9 (i) and 9 (iv), we obtain g(k)

x = A∗kθ01n +On(σn ‖θ01n‖+ ‖θ01n‖1+η).
Recall σn = on(n−

1
2(K+1) ). Then if we choose any ω̃0 ∈

(
max{ 1

2(1+η) ,
1
2 −

1
2(K+1)},

1
2

)
, n1/2On(σn ‖θ01n‖+

‖θ01n‖2) = on(1) for all {Υn} satisfying ‖θ01n‖ 6 Cn−ω̃0 . Hence, for these DGPs, n1/2g
(k)
x =

n1/2A∗kθ01n + on(1) for k ∈ 2, . . . ,K. At the same time, n1/2ψ = Op,n(1) (Lemma A.4) and, as
argued in the proof Theorem A.1, n1/2

(
g

(k)
x − g(k)

x

)
= Op,n(1). Hence, since Γ is bounded,

n1/2ψ(θ̂, γ̂) = Ψ∗θ(θ0n, γ̂)n1/2(θ̂ − θ0n)−
K∑
k=2

(γ̂k − γ0kn)n1/2A∗kθ01n + op,n(n1/2(θ̂ − θ0n)) +Op,n(1).

Denote M∗A = Im − Λ∗A(Λ∗′AΛ∗A)−1Λ∗′A, where Λ∗A = (A∗2, . . . , A∗K). Then

n1/2M∗Aψ(θ̂, γ̂) = M∗AΨ∗θ(θ0n, γ̂)n1/2(θ̂ − θ0n) + op,n(n1/2(θ̂ − θ0n)) +Op,n(1).
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Note that, by Assumption 9 (iii), there exists C > 0 such that∥∥∥M∗AΨ∗θ(θ0n, γ̂)n1/2(θ̂ − θ0n)
∥∥∥ > Cn1/2

∥∥∥θ̂ − θ0
∥∥∥ ,

so

n1/2
∥∥∥ψ(θ̂, γ̂)

∥∥∥ > n1/2
∥∥∥M∗Aψ(θ̂, γ̂)

∥∥∥ > Cn1/2
∥∥∥θ̂ − θ0

∥∥∥+ op,n(n1/2(θ̂ − θ0n)) +Op,n(1).

At the same time, since n1/2 ∥∥ψ(θ0n, γ0n)
∥∥ = Op,n(1), by the hypothesis of the theorem and As-

sumption 5 (iv),

n1/2
∥∥∥ψ(θ̂, γ̂)

∥∥∥ 6 Op,n(1).

Thus,

Cn1/2
∥∥∥θ̂ − θ0

∥∥∥+ op,n(n1/2(θ̂ − θ0n)) +Op,n(1) 6 Op,n(1),

which implies θ̂ − θ0n = Op,n(n−1/2). Q.E.D.

A.3.2 Proof of Theorem 3

Proof of Theorem 3. We want to show θ̂ − θ0n = Op,n(n−1/2), i.e. that for any ε > 0, there exists
Cε > 0 such that

lim sup
n→∞

sup
Υn

PΥn

(
n1/2

∥∥∥θ̂ − θ0n
∥∥∥ > Cε

)
< ε. (A.1)

Take ω̃0 as in Lemma A.8 and fixed C > 0. Then, by Lemma A.8, for any ε > 0, there exists C0
ε

such that

lim sup
n→∞

sup
Υn:‖θ01n‖6Cn−ω̃0

PΥn

(
n1/2

∥∥∥θ̂ − θ0n
∥∥∥ > C0

ε

)
< ε.

At the same time, since ω̃0 < 1/2, by Theorem 2, for any ε > 0, there exists Csε such that

lim sup
n→∞

sup
Υn:‖θ01n‖>Cn−ω̃0

PΥn

(
n1/2

∥∥∥θ̂ − θ0n
∥∥∥ > Csε

)
< ε.

Hence, (A.1) holds with Cε = max{C0
ε , C

s
ε }. Q.E.D.

A.4 Proof of Theorem 4
Proof of Theorem 4. The first step is to show that n1/2gU(θ0n) = n1/2g∗U(θ0n) + n1/2bn + op,n(1)
for the moment bias bn defined later. By the standard expansion
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n1/2gU(θ0n) =n−1/2
n∑
i=1

gU(X∗i , Si, θ0n) + n−1/2
n∑
i=1

g
(1)
Ux(X∗i , Si, θ0n)(εin/σn)

+
K∑
k=2

σkn
k! n

−1/2
n∑
i=1

g
(k)
Ux(X∗i , Si, θ0n)(εin/σn)k

+ σKn
K! n

−1/2
n∑
i=1

(g(K)
Ux (X̃i, Si, θ0n)− g(K)

Ux (X∗i , Si, θ0n))(εin/σn)K .

As established in the proof of Lemma A.4,

n−1/2
n∑
i=1

g
(1)
Ux(X∗i , Si, θ0n)(εin/σn) = op,n(1),

σKn
K! n

−1/2
n∑
i=1

(g(K)
Ux (X̃i, Si, θ0n)− g(K)

Ux (X∗i , Si, θ0n))(εin/σn)K = op,n(1).

Let us denote ξkin ≡ g
(k)
Ux(X∗i , Si, θ0n)(εin/σn)k for k ∈ {2, . . . ,K}. Note that, using the hypothesis

of the theorem,

ξkn ≡ E [ξkin] = A∗Ukθ01nE
[
(εin/σn)k

]
+On(‖θ01n‖2).

So, we have

n1/2gU(θ0n) = n1/2g∗n(θ0n) + n1/2bn +
K∑
k=2

σkn
k! n

−1/2
n∑
i=1

(ξkin − ξkn) + op(1).

where

bn ≡
K∑
k=2

σkn
k! A

∗
Ukθ01nE

[
(εin/σn)k

]
+On(σ2

n ‖θ01n‖2).

Moreover, we have

V
[
σkn
k! n

−1/2
n∑
i=1

(ξkin − ξkn)
]

= on(1),

and, hence, by Chebyshev’s inequality,

σkn
k! n

−1/2
n∑
i=1

(ξkin − ξkn) = op,n(1)

for k ∈ {2, . . . ,K}. As a result, we conclude

n1/2gU(θ0n) = n1/2g∗U(θ0n) + n1/2bn + op,n(1). (A.1)

The rest of the proof is standard and follows the corresponding lines of the proof of Theorem
2 Part (i). We start with ∇θQ̂U(θ̂U) = op,n(n−1/2), expand gU(θ̂U) around θ0n, exploit uniform
consistency of θ̂U along with the result of Lemma A.3, Assumptions 5 (iv) and Condition (ii) of
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the theorem, to show that

n1/2(θ̂U − θ0n) = −
(
(G∗′UΞUG

∗
U)−1G∗′UΞU + op,n(1)

)
n1/2gU(θ0n)

= −
(
(G∗′UΞUG

∗
U)−1G∗′UΞU + op,n(1)

) (
n1/2g∗U(θ0n) + n1/2bn + op,n(1)

)
= −(G∗′UΞUG

∗
U)−1G∗′UΞUn

1/2g∗U(θ0n) + n1/2bθn + op,n(n1/2bn) + op,n(1),

where

bθn ≡ −(G∗′UΞUG
∗
U)−1G∗′UΞUbn = −(G∗′UΞUG

∗
U)−1G∗′UΞU

K∑
k=2

σkn
k! A

∗
Ukθ01nE

[
(εin/σn)k

]
+On(σ2

n ‖θ01n‖2).

Rearranging the terms gives

n1/2(θ̂U − θ0n − bθn) = −(G∗′UΞUG
∗
U)−1G∗′UΞUn

1/2g∗U(θ0n) + op,n(n1/2bθn) + op,n(1)
= −(G∗′UΞUG

∗
U)−1G∗′UΞUn

1/2g∗U(θ0n) + op,n(1),

where the second equality is due to n1/2bn = On(1) (guaranteed by n1/2
(∑K

k=2
E[εkin]
k! A∗Uk

)
θ01n =

On(1) and n1/2σ2
n ‖θ01n‖2 = On(1)). This, along with n1/2Ω∗−1/2

gUgU g∗U(θ0n) d→ N(0, Im), ensures

n1/2Σ∗−1/2
U (θ̂U − θ0n − bθn) d→ N(0, Ip),

where

Σ∗U ≡ (G∗′UΞUG
∗
U)−1G∗′UΞUΩ∗gUgUΞUG

∗
U(G∗′UΞUG

∗
U)−1

has eigenvalues uniformly bounded from below and above. Finally, Lemma A.3 ensures that GU =
G∗U + on(1) and ΩgUgU = Ω∗gUgU + on(1), so we also have ΣU = Σ∗U + op(1) and

n1/2Σ−1/2
U (θ̂U − θ0n − bθn) d→ N(0, Ip),

which completes the proof, since θU0n = θ0n + bθn. Q.E.D.

A.5 Proofs concerning hybrid inference

A.5.1 Proof of Lemma 2

Proof of Lemma 2. We show that Assumption 10 is satisfied for Σ̂θ1 . First, we inspect Condition
(ii). Take any fixed C̃ > 0 and ωL ∈ (0, 1/2) as the condition requires. In this case, we are
in the semi-strong identification regime and Lemma A.7 applies. Specifically, it ensures SΣ̂S =
Σ + op,n(1). Also note that PθS = Pθ and SP ′θ = P ′θ, where Pθ = (Ip, 0p×(K−1)). Then, taking the
θ-corresponding submatrices gives

Σ̂θ = PθΣ̂P ′θ = PθSΣ̂SP ′θ = PθΣP ′θ + op,n(1). (A.1)

Since λmax(Σ) < C, we also have that λmax(Σ̂θ) < C with probability approaching one. Finally,
this also implies that λmax(Σ̂θ1) < C with probability approaching one. Hence, Condition (ii) is
satisfied.
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Then we verify Condition (i). Take δ0 > 0 as in Assumption 9. Note that Condition (i) is
trivially satisfied for ‖θ01n‖ > δ0, since, in this case, Σ̂θ1 = Σ∗θ1

+op,n(1), and the minimal eigenvalue
of Σ∗θ1

is bounded away from zero (the standard strong identification asymptotics applies). Then
we verify Condition (i) for ‖θ01n‖ 6 δ0. By construction,

Σ̂ > (Ψ̂′Ω̂−1
ψψΨ̂)−1.

Since Σ̂θ1 is a submatrix of Σ̂, it is sufficient to demonstrate that λmin(Ψ̂′Ω̂−1
ψψΨ̂)−1 > 1/C >

0, or, equivalently, that λmax(Ψ̂′Ω̂−1
ψψΨ̂) < C with probability approaching one. Recall Ψ̂ =(

Ψθ(θ̂, γ̂),−g(2)
x (θ̂), . . . ,−g(K)

x (θ̂)
)
. In the proof of Lemma A.8, we have shown that supγ∈Γ

∥∥∥Ψθ(θ̂, γ)−Ψ∗θ(θ0n, γ)
∥∥∥ =

op(1), where Ψ∗θ(θ0n, γ) is uniformly bounded (this is ensured for ‖θ01n‖ 6 δ0). Also, as shown in
the proof of Lemma A.3, g(k)

x (θ̂) = g
(k)∗
x + op,n(1), where, again, g(k)∗

x are uniformly bounded, for
k ∈ {2, . . . ,K}. Hence, for some C > 0, we have

∥∥∥Ψ̂∥∥∥ 6 C with probability approaching one
uniformly. Then, using the same argument as in the proof of Lemma A.3, we have

sup
γ∈Γ

∥∥∥Ω̂ψψ(θ̂, γ)−1 − Ω∗ψψ(θ0n, γ)
∥∥∥ = op,n(1).

Combining this fact with infγ∈Γ λmin(Ω∗ψψ(θ0n, γ)) > C > 0 (which is a hypothesis of the lemma),
ensures that, for some C > 0, we have λmax(Ω̂−1

ψψ) < C with probability approaching one. Combin-
ing this with the bound on

∥∥∥Ψ̂∥∥∥, we conclude that, for some C > 0, we have λmax(Ψ̂′Ω̂−1
ψψΨ̂) < C

with probability approaching one, which ensures that with probability approaching one we have
λmin(Σ̂θ) > 1/C > 0 with probability approaching one. Finally, note that this also implies
λmin(Σ̂θ1) > λmin(Σ̂θ) > 1/C > 0 with probability approaching one. Since Condition (i) is satisfied
for both ‖θ01n‖ > δ0 and ‖θ01n‖ 6 δ0, it is trivially satisfied uniformly over the entire parameter
space.

A logically very similar but technically simpler (since γ̂ is no longer involved) argument can be
invoked to show that Σ̂R,θ1 also satisfies Assumption 10. Q.E.D.

A.5.2 Proofs of Theorems 5 and 6

First, we prove Theorem 6. Then Theorem 5 follows immediately.

Proof of Theorem 6. To prove Part (i), we need to show that for any sequence of DPGs {Υn},
lim supn→∞ EΥn [φTH ] 6 α. Take any fixed C > 0 and ω∗ ∈ [ωNZ, ωL]. Then, any sequence
{Υn} can be split into two subsequences: the elements of the first subsequence are those which
satisfy ‖θ01n‖ 6 Cn−ω

∗ , and the elements of the second subsequence are those which satisfy the
complement requirement ‖θ01n‖ > Cn−ω

∗ . As usual, let {n1j}∞j=1 and {n2j}∞j=1 refer to the elements
of these subsequences. To complete the proof it is sufficient to show that

lim sup
j→∞

EΥn1j
[φTH ] 6 α, (A.2)

lim sup
j→∞

EΥn2j
[φTH ] 6 α. (A.3)

We start with the first subsequence. Note that by θ̂1− θ01n = Op,n(n−1/2) and by Assumptions
10 (i) and 11 (iii), lim supj→∞ PΥn1j

(ÂICS > κL,n1j ) = 0. Moreover, the test TNZ controls size under
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any sequence of the first type, so

lim sup
j→∞

EΥn1j
[φTNZ ] 6 α.

Also note that, by construction, φIITH 6 φTNZ + 1{ÂICS > κL,n1j}. Hence,

EΥn1j
[φT IIH

] 6 EΥn1j
[φTNZ ] + PΥn1j

(ÂICS > κL,n1j ).

Taking lim supj→∞ of both sided ensures that (A.2) holds.
For the second subsequence note again that θ̂1 − θ01n = Op,n(n−1/2) and Assumptions 10 (ii)

and 12 (i) guarantee that lim supj→∞ PΥn2j
(ÂICS < κNZ,n2j ) = 0. Also, the test TL controls size

under any sequence of the second type:

lim sup
j→∞

EΥn2j
[φTL ] 6 α.

Finally, note φIITH 6 φTL + 1{ÂICS < κNZ,n2j}. Hence,

EΥn2j
[φTH ] 6 EΥn2j

[φTs ] + PΥn2j
(ÂICS < κNZ,n2j ),

and taking lim supj→∞ of both sides ensures that (A.3) holds. Hence (A.2) and (A.3) are demon-
strated to hold, the proof of the first statement is complete.

Now we prove Part (ii). First, note that ‖θ01n‖ /(n−1/2κL,n) → ∞, along with Assumption 11
(iii), implies that ‖θ01n‖ > Cn−ωL for some (actually, any fixed) C > 0. Hence, for {Υn} satisfying
‖θ01n‖ /(n−1/2κL,n) → ∞, Assumption 10 (ii) applies. Combining θ̂1 = θ01n + Op,n(n−1/2) with
Assumption 10 (ii), we conclude that, for {Υn} satisfying ‖θ01n‖ /(n−1/2κL,n)→∞, ÂICS−κL,n →
∞ and λL(ÂICS − κL,n) → 1 as n → ∞ with probability approaching one uniformly. Hence,
supv

∣∣∣pT IIH
− pTL

∣∣∣ = op,n(1), where uniformity over v follows trivially since the p-values are bounded.
Finally, we prove Part (iii). For {Υn} satisfying ‖θ01n‖ /(n−1/2κNZ,n) → 0, θ̂1 = θ01n +

Op,n(n−1/2) and Assumption 10 (ii) together ensure that κNZ,n − ÂICS → ∞ and λNZ(κNZ,n −
ÂICS) → 1 as n → ∞ with probability approaching one uniformly. Hence, supv

∣∣pIITH
− pTNZ

∣∣ =
op,n(1), where uniformity over v follows trivially since the p-values are bounded. Q.E.D.

Proof of Theorem 5. Note that uniformly validity of T IIH (Theorem 6 Part (i)) immediately implies
that T IH , which is more conservative than T IIH , is also uniformly valid, so Part (i) of Theorem 5
trivially holds.

The proof of Part (ii) is exactly the same as the proof of Part (ii) of Theorem 6. Q.E.D.

A.5.3 Proof of Theorem 7

Proof of Theorem 7. We prove the second part of the theorem. The proof of the first part is
completely analogous and follows from second.

We just need to verify that the hypotheses of Theorem 6 are satisfied. The requirement of
θ̂1 = θ01n + Op,n(n−1/2) is trivially satisfied for the MME estimator θ̂ (Theorem 3). Assumption
11 (ii) is ensured to be satisfied by Lemma 2. Assumptions 11 (iii), (iv) and 12 (i) and (ii) are
explicitly made by the theorem.

We are left to show that Assumption 11 (i) holds with ωL and ωNZ given in the text of the
theorem. We start with TL. Since ωL < 1/2, the assertion of Theorem A.1 applies, so for any {Υn}
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satisfying ‖θ01n‖ > Cn−ωL , we have

n1/2Σ−1/2
θ (θ̂ − θ0n) d→ N(0, Ip), (A.4)

where Σθ is the θ-corresponding submatrix of Σ, i.e. Σθ = PθΣP ′θ, where Pθ = (Ip, Ip×(K−1)). Also,
in the proof of Theorem 2, we have established that Σ̂ = Σθ + op,n(1), and the eigenvalues of Σθ

are bounded from zero and above. Next, since R is continuous on Θ, which is compact, it is also
uniformly continuous. Then, since θ̂ − θ0n = Op,n(n−1/2), we have R̂ = R + op,n(1). Combining
these consistency results for Σ̂θ and R̂ with λmin(RR′) > C > 0, we conclude that

(R̂Σ̂θR̂
′)−1 = (RΣθR)−1 + op,n(1).

Finally, under the null, we have

n1/2(r(θ̂)− v) = n1/2(r(θ̂)− θ0n) = n1/2R(θ̃)(θ̂ − θ01n) = Rn1/2(θ̂ − θ0n) + op,n(1),

where the last equality is due R(θ̃) = R + op,n(1) and n1/2(θ̂ − θ0n) = Op,n(1). Combining these
results,

WL = n1/2(θ̂ − θ0n)′R′(RΣθR
′)−1Rn1/2(θ̂ − θ0n) + op,n(1)

= n1/2(θ̂ − θ0n)′Σ−1/2
θ Σ1/2

θ R′(RΣθR
′)−1RΣ1/2

θ Σ−1/2
θ n1/2(θ̂ − θ0n) + op,n(1)

d→ χ2
dr ,

where the convergence in distribution is due (A.4). Since, for any {Υn} satisfying ‖θ01n‖ > Cn−ωL ,
we have WL → χ2

dr
, (7.2) holds.

To demonstrate that (7.3) holds, note that, since ωNZ > 1/2 − 1/(K + 1), the assertion of
Corollary 1 holds, and we have, for all {Υn} satisfying ‖θ01n‖ 6 Cn−ωNZ

n1/2Σ−1/2
U (θ̂U − θ0n) d→ N(0, Ip),

and Σ̂U = ΣU + op,n(1). Then, a nearly identical argument can be invoked to demonstrate that,
for all {Υn} satisfying ‖θ01n‖ 6 Cn−ωNZ , WU → χ2

dr
, and, consequently, (7.3) also holds. Q.E.D.

A.5.4 Proof of Theorem 8

First we prove a general statement about uniform asymptotic normality of an adaptive estimator.
Then we verify that this result applies to the setting of Theorem 8.

A.5.4.1 General adaptive estimation

We consider the following adaptive estimator

θ̂A = θ̂NZ + Λ̂n(θ̂L − θ̂NZ), Λ̂n ≡ Λ
(
ÂICS − κNZ,n
κL,n − κNZ,n

)
,

where, as before,

ÂICS = (nθ̂′1V̂ −1
11 θ̂1/p1)1/2.
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Assumption A.2. There exist some 0 < ωNZ < ωL < 1/2 such that:

(i) for all {Υn} satisfying ‖θ01n‖ > Cn−ωL for any fixed C > 0, we have

n1/2Σ−1/2
L (θ̂L − θ0n) d→ N(0, Ip) and Σ̂L = ΣL + op,n(1),

where ΣL is a symmetric matrix with 0 < 1/Cλ < λmin(ΣL) 6 λmax(ΣL) < Cλ;

(ii) for all {Υn} satisfying ‖θ01n‖ 6 Cn−ωNZ for any fixed C > 0, we have

n1/2Σ−1/2
NZ (θ̂NZ − θ0n) d→ N(0, Ip) and Σ̂NZ = ΣNZ + op,n(1),

where ΣNZ is a symmetric matrix with 0 < 1/Cλ < λmin(ΣNZ) 6 λmax(ΣNZ) < Cλ;

(iii) moreover, for all {Υn} satisfying Cn−ωL 6 ‖θ01n‖ 6 Cn−ωNZ for any fixed C > 0, for any
fixed nonzero c = (c1, c2)′ ∈ R2, we have

n1/2Σ−1/2
c

(
c1θ̂L + c2θ̂NZ − (c1 + c2)θ0n

)
d→ N(0, Ip), Σc ≡ (c2

1ΣL + c1c2(ΣL,NZ + Σ′L,NZ) + c2
2ΣNZ),

and Σ̂L,NZ = ΣL,NZ + op(1), where ΣL,NZ is uniformly bounded;

(iv) θ̂1 = θ01n +Op,n(n−1/2);

(v) 0 < 1/C < λmin(V̂11) for some C > 0 with probability approaching one uniformly;

(vi) for all {Υn} satisfying ‖θ01n‖ > Cn−ωL , we have V̂11 = V11 +op,n(1), where V11 is a symmetric
matrix with 0 < 1/C < λmin(V11) 6 λmax(V11) < C;

(vii) Λ : R → [0, 1] is a weakly increasing function satisfying Λ(z) = 0 for all z 6 0, Λ(z) = 1 for
all z > 1 and |Λ(z′)− Λ(z)| 6 Λ |z′ − z| for all z′, z ∈ R;

(viii) the thresholds κNZ,n < κL,n satisfy nωL−1/2κNZ,n →∞ and nωNZ−1/2κL,n → 0.

Lemma A.9. Under Assumption A.2, we have

n1/2Σ̂−1/2
A (θ̂A − θ0n) d→ N(0, Ip), (A.5)

where

Σ̂A = Λ̂2
nΣ̂L + Λ̂n(1− Λ̂n)(Σ̂L,NZ + Σ̂′L,NZ) + (1− Λ̂n)2Σ̂NZ.

Proof of Lemma A.9. Take any {Υn}, and split it into 3 subsequences: the elements of the first
satisfy satisfy ‖θ01n‖ 6 Cn−ωL , the elements of the second satisfy Cn−ωL < ‖θ01n‖ 6 Cn−ωNZ , and
the elements of the third satisfy ‖θ01n‖ > Cn−ωNZ , for some fixed C > 0. Then, it is sufficient to
argue that (A.5) holds for all of the three subsequences.

We start with the first subsequence with elements satisfying ‖θ01n‖ 6 Cn−ωL . Using Conditions
(iv) and (v), we have ÂICS = (nθ′01nV̂

−1
11 θ01n)1/2+op(1). Combining these conditions with Condition

(viii), we conclude that, in this case, we have ÂICS − κNZ,n < 0 with probability approaching one.
Hence, by Condition (vii), we have θ̂A = θ̂NZ and Σ̂A = ΣNZ with probability approaching one, so

n1/2Σ̂−1/2
A (θ̂A − θ0n) = n1/2Σ̂−1/2

NZ (θ̂NZ − θ0n)

A-22



holds with probability approaching one. Finally note that, since ωNZ < ωL, Assumption A.2 (ii)
guarantees that for the elements of the first subsequence we have

n1/2Σ̂−1/2
NZ (θ̂NZ − θ0n) d→ N(0, Ip).

we conclude that also (A.5) holds.
Now we consider the second subsequence with elements satisfying Cn−ωL < ‖θ01n‖ 6 Cn−ωNZ .

Note for the elements of this subsequence the joint convergence condition (iii) applies. First,
note that, in this case, Conditions (iv) and (vi) guarantee that ÂICS = A + op,n(1), where A ≡
(nθ′01nV

−1
11 θ01n). Then Condition (vii), along with κL,n − κNZ,n →∞, guarantees

Λ̂n − Λn = op,n(1),

where

Λn = Λ
(

A− κNZ,n
κL,n − κNZ,n

)
.

Hence, we also have

n1/2(θ̂A − θ0n) = Λ̂nn1/2(θ̂L − θ0n) + (1− Λ̂n)n1/2(θ̂NZ − θ0n)
= Λnn1/2(θ̂L − θ0n) + (1− Λn)n1/2(θ̂NZ − θ0n) + op,n(1),

where the second equality also uses n1/2(θ̂L − θ0n) = Op,n(1) and n1/2(θ̂NZ − θ0n) = Op(1). In
addition,

Σ̂A = Λ2
nΣL + Λn(1− Λn)(ΣL,NZ + Σ′L,NZ) + (1− Λn)2ΣNZ + op,n(1).

Combining these results, we obtain

n1/2Σ̂−1/2
A (θ̂A − θ0n) =(Λ2

nΣL + Λn(1− Λn)(ΣL,NZ + Σ′L,NZ) + (1− Λn)2ΣNZ)−1/2

× n1/2(Λn(θ̂L − θ0n) + (1− Λn)(θ̂NZ − θ0n)) + op,n(1) d→ N(0, Ip),

where the convergence in distribution follows from Condition (iii).
Finally, we consider the third subsequence with elements satisfying ‖θ01n‖ > Cn−ωNZ . In this

case, we again have ÂICS = A + op,n(1). Then, using Condition (viii), we also have ÂICS > κL,n
with probability approaching one. Hence, with probability approaching one, we have (by Condition
(vii)) θ̂A = θL and Σ̂A = Σ̂L. So, with probability approaching one, we have

n1/2Σ−1/2
A (θ̂A − θ0n) = n1/2Σ̂−1/2

L (θ̂L − θ0n).

Finally, since ωNZ < ωL, Condition (i) guarantees that for the elements of the third subsequence
we have

n1/2Σ̂−1/2
L (θ̂L − θ0n) d→ N(0, Ip).

Hence, we conclude that (A.5) also holds.
Since we have shown that (A.5) holds for all of the considered subsequences of {Υn}, for any

arbitrary {Υn}, the proof is complete. Q.E.D.

A-23



A.5.4.2 An example of the asymptotic covariance estimator and Proof of Theorem 8

The asymptotic covariance between θ̂ and θ̂U can be estimated by

Σ̂θθU ≡ Pθ(Ψ̂
′Ξ̂Ψ̂)−1Ψ̂′Ξ̂Ω̂ψgUΞ̂UĜU(Ĝ′UΞ̂UĜU)−1, Ω̂ψgU ≡ n

−1
n∑
i=1

ψi(β̂)gui(θ̂U),

where Pθ = (Ip, 0p×(K−1)), p ≡ dim(θ0n). Similarly, to the regularized estimators ΣR and ΣU,R,
one can also consider a regularized version of Σ̂θ,u.

Proof of Theorem 8. The proof is essentially a verification of Assumption A.2.
Verification of Condition (i). Recall that in the proof of Theorem A.1 we have

Sn(β̂ − β0n) = −(B′ΞB)−1B′Ξn1/2ψ + op,n(1).

So,

n1/2(θ̂ − θ0n) = −Pθ(B′ΞB)−1B′Ξn1/2ψ + op,n(1). (A.6)

Hence,

n1/2Σ−1/2
θ (θ̂ − θ0n) d→ N(0, Ip),

where Σθ = PθΣP ′θ has eigenvalues bounded from below and above. Then, note that Lemma
A.7 ensures SΣ̂S = Σ + op,n(1). Also note that PθS = Pθ and SP ′θ = P ′θ. Then, taking the
θ-corresponding submatrices gives

Σ̂θ = PθΣ̂P ′θ = PθSΣ̂SP ′θ = PθΣP ′θ + op,n(1).

So, Condition (i) is satisfied with θ̂L = θ̂, ΣL = PθΣP ′θ and Σ̂L = Σ̂θ.
Verification of Condition (ii). Corollary 1 ensures that the required condition is satisfied with

θ̂NZ = θU and ΣNZ = Σ∗U (note that Lemma A.3 guarantees that Σ∗U = ΣU + on(1)) Also, note that
Lemma A.3 guarantees that Σ̂U = Σ∗U + op,n(1).

Verification of Condition (iii).
In the proof of Theorem 4, we have established (A.1). Note that, for ‖θ01n‖ 6 Cn−ωNZ , we also

have n1/2bn = on(1) (no asymptotic bias in the uncorrected moments). Hence, (A.1) simplifies as

n1/2gU = n1/2g∗U + op,n(1),

and, hence,

n1/2(θ̂U − θ0n) = −(G∗′UΞUG
∗
U)−1G∗′UΞUg

∗
U + op,n(1). (A.7)

By the same argument, for ‖θ01n‖ 6 Cn−ωNZ , we also have

ψ = g∗ + op,n(1).

In this case, (A.6) simplifies as

n1/2(θ̂ − θ0n) = −Pθ(B′ΞB)−1B′Ξn1/2g∗ + op,n(1).
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Then, combining this with (A.7), we obtain

n1/2(c1θ̂ + c2θ̂U − (c1 + c2)θ0n) = −c1Pθ(B′ΞB)−1B′Ξn1/2g∗ − c2(G∗′UΞUG
∗
U)−1G∗′UΞUg

∗
U + op,n(1).

In this case, we put

Σc = c2
1ΣL + c1c2(ΣL,NZ + Σ′L,NZ) + c2

2ΣNZ,

with ΣL = PθΣP ′θ, ΣNZ = Σ∗U, and

ΣL,NZ = Pθ(B′ΞB)−1B′ΞΩ∗ggUΞUG
∗
U(G∗′UΞUG

∗
U)−1, Ω∗ggU ≡ E [g∗i g∗′ui] .

Then, we have

n1/2Σ−1/2
c (c1θ̂ + c2θ̂U − (c1 + c2)θ0n) d→ N(0, Ip).

Finally, we need to show that Σ̂θθU = ΣL,NZ + op(1). Note that, again using Pθ = PθS
−1, we have

Σ̂θ,u ≡ Pθ(Ψ̂′Ξ̂Ψ̂)−1Ψ̂′Ξ̂Ω̂ψgUΞ̂UĜU(Ĝ′UΞ̂UĜU)−1,

= Pθ(S−1Ψ̂′Ξ̂Ψ̂S−1)−1S−1Ψ̂′Ξ̂Ω̂ψgUΞ̂UĜU(Ĝ′UΞ̂UĜU)−1.

Then, Ψ̂S−1 = B + op,n(1) (see, for example, the proof of Lemma A.7). Also, as usual, Ξ̂ =
Ξ + op,n(1), Ξ̂U = ΞU + op,n(1), and ĜU = G∗U + op,n(1). Finally, replicating (a part of the) proof
of Lemma A.3, we also have Ω̂ψgU = Ω∗ggU + op,n(1). Hence, Condition (iii) is satisfied.

Verification of Condition (v). Ensured by Lemma 2 with V̂11 = Σ̂R,θ1 or V̂11 = Σ̂θ1 .
Verification of Condition (vi). For example, take V̂11 = Σ̂θ. Note that, above we have shown,

Σ̂θ = PθΣP ′θ + op,n(1) whenever ‖θ01n‖ > Cn−ωL . Again, note that the eigenvalues of PθΣP ′θ are
(uniformly) bounded from below and above. So, Condition (vi) is satisfied with V11 = PθΣP ′θ. By
the same reasoning, Condition (vi) is also satisfied with V̂11 = Σ̂R,θ.

Verification of Condition (iv). Explicitly stated as properties of Λ.
Verification of Condition (viii). Explicitly assumed as one of the hypotheses of Theorem 8.

Q.E.D.

A.6 Auxiliary Lemmas: Uniform ULLN
Lemma A.10 (Uniform-ULLN). Suppose that (i) {Zi}ni=1 are independently and identically dis-
tributed according to law F ∈ F ; (ii) Θ ∈ Rp is bounded; (iii) for some (measurable) functionM(Zi)
and for all δ > 0, ‖η(Zi, θ)− η(Zi, θ′)‖ 6M(Zi)δ for all θ, θ′ ∈ Θ : ‖θ − θ′‖ 6 δ a.s. for all F ∈ F ;
(iv) for some η > 0, supF∈F EF

[
‖η(Zi, θ)‖1+η] < C for every θ ∈ Θ; (v) supF∈F EF [M(Zi)] < C.

Then, for any ε > 0,

lim sup
n→∞

sup
F∈F

PF

(
sup
θ∈Θ

∥∥∥∥∥n−1
n∑
i=1

η(Zi, θ)− EF [η(Zi, θ)]
∥∥∥∥∥ > ε

)
= 0.

Proof. Denote ηi(θ) = η(Zi, θ) and qi,F (θ) = ηi(θ) − ηF (θ), where ηF (θ) ≡ EF [ηi(θ)]. We need to
show that

lim sup
n→∞

sup
F∈F

PF
(

sup
θ∈Θ
‖qF (θ)‖ > ε

)
= 0,
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where qF (θ) ≡ n−1∑n
i=1 (ηi(θ)− ηF (θ)). First, (iv) guarantees uniform pointwise convergence of

qF (θ) towards zero, i.e. for every ε > 0,

lim sup
n→∞

sup
F∈F

PF (‖qF (θ)‖ > ε) = 0 (A.1)

for every θ ∈ Θ. Second, for all δ > 0,

sup
‖θ−θ′‖6δ

‖qF (θ)− qF (θ′)‖ 6 sup
‖θ−θ′‖6δ

(‖ηF (θ)− ηF (θ′)‖+ ‖ηF (θ)− ηF (θ′)‖) (A.2)

6 sup
‖θ−θ′‖6δ

‖ηF (θ)− ηF (θ′)‖+ sup
‖θ−θ′‖6δ

‖ηF (θ)− ηF (θ′)‖ . (A.3)

where sup‖θ−θ′‖6δ abbreviates supθ,θ′∈Θ:‖θ−θ′‖6δ. Applying (iii) gives

sup
‖θ−θ′‖6δ

‖ηF (θ)− ηF (θ′)‖ 6 n−1
n∑
i=1

M(Zi)δ a.s.

Similarly, using (iii),

sup
‖θ−θ′‖6δ

‖ηF (θ)− ηF (θ′)‖ 6 sup
‖θ−θ′‖6δ

EF [‖η(Zi, θ)− η(Zi, θ′)‖]

6 EF [M(Zi)]δ.

Hence,

sup
‖θ−θ′‖6δ

‖qF (θ′)− qF (θ)‖ 6 n−1
n∑
i=1

Mq(Zi)δ a.s., (A.4)

whereMq(Zi) ≡M(Zi)+EF [M(Zi)]. Note that, combining (v) with Markov inequality, we conclude
that n−1∑n

i=1Mq(Zi) is uniformly tight, i.e., for every ε > 0, there exists Cε > 0 such that

lim sup
n→∞

sup
F∈F

PF

(
n−1

n∑
i=1

Mq(Zi) > Cε

)
< ε. (A.5)

Therefore, by combining (A.4) and (A.5), we conclude that for any ε > 0 there exists δε = ε/Cε
such that

lim sup
n→∞

sup
F∈F

PF

(
sup

θ,θ′∈Θ:‖θ−θ′‖<δε
‖qF (θ′)− qF (θ′)‖ > ε

)
< ε. (A.6)

The rest of the proof is standard. Since Θ is bounded, it can be covered by a finite number of balls
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of radius δε, {Bδε(θj)}Jj=1.

PF
(

sup
θ∈Θ
‖qF (θ)‖ > 2ε

)
= PF

(
max
j

sup
θ∈Bδε (θj)

‖qF (θ)‖ > 2ε
)

6 PF

(
sup

θ,θ′∈Θ:‖θ−θ′‖<δε
‖qF (θ′)− qF (θ′)‖ > ε

)
+ PF

(
max
j
‖q(θj)‖ > ε

)

6 PF

(
sup

θ,θ′∈Θ:‖θ−θ′‖<δε
‖qF (θ′)− qF (θ′)‖ > ε

)
+

J∑
j=1

PF (‖q(θj)‖ > ε) ,

where θ ∈ Bδε(θj) abbreviates θ ∈ Θ : θ ∈ Bδε(θj). Then taking lim supn→∞ supF∈F of the both
sides gives

lim sup
n→∞

sup
F∈F

PF
(

sup
θ∈Θ
‖qF (θ)‖ > 2ε

)
< ε,

where we used (A.6) and (A.1). Since ε > 0 was arbitrary chose, this completes the proof. Q.E.D.

Lemma A.11 (Uniform-ULLN for a differentiable function). Suppose that (i) {Zi}ni=1 are inde-
pendently and identically distributed according to law F ∈ F ; (ii) Θ ∈ Rp is bounded and convex;
(iii) (a vector function) η(Zi, θ) is differentiable on Θ with probability one for every F ∈ F ; (iv) for
some η > 0, supF∈F EF

[
‖ηi(θ)‖

1+η] < C for every θ ∈ Θ; (v) supF∈F EF [supθ∈Θ ‖∇θηi(θ)‖] < C.
Then, for any ε > 0,

lim sup
n→∞

sup
F∈F

PF

(
sup
θ∈Θ

∥∥∥∥∥n−1
n∑
i=1

η(Zi, θ)− EF [η(Zi, θ)]
∥∥∥∥∥ > ε

)
= 0.

Proof. We just need to verify that Conditions (iii) and (v) of Lemma A.10 are satisfied. First, since
Θ is convex and η(Zi, θ) is a.s. differentiable,

‖η(Zi, θ)− η(Zi, θ′)‖ 6 sup
θ∈Θ
‖∇θη(Zi, θ)‖ ‖θ − θ′‖ a.s.

Hence, Condition (iii) of Lemma A.10 is satisfied with M(Zi) = supθ∈Θ ‖∇θη(Zi, θ)‖. Then (v)
immediately implies Condition (v) of Lemma A.10. Q.E.D.

A.7 Verification of Assumptions for GLM
In this Appendix we provide verify that the higher-level assumptions hold for the Generalized
Linear Model (GLM). Consider GLM of the form

Yi = ρ(θ01nX
∗
i + θ′02Wi) + Ui, E [Ui|X∗i ,Wi, Zi] = 0,

and the moment function

g(x, s, θ) = (ρ(θ1x+ θ′2w)− y)h(x,w, z).
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where r = (w′, y, z′)′, Si = (W ′i , Yi, Z ′i)′, and θ = (θ1, θ
′
2)′. In this case,

g(k)
x (x, s, θ) = (ρ(θ1x+ θ′2w)− y)h(k)

x (x,w, z) +
k∑
j=1

(
k

j

)
θj1ρ

(j)(θ1x+ θ′2w)h(k−j)
x (x,w, z), (A.1)

and

g(k)∗
x ≡ E

[
g(k)
x (X∗i , Si, θ0n)

]
= E

 k∑
j=1

(
k

j

)
θj01nρ

(j)(θ01nX
∗
i + θ′02nWi)h(k−j)

x (X∗i ,Wi, Zi)

 . (A.2)

Also, let H(x,w, z) ≡ h(x,w, z) · (x,w′). Then

G(x, s, θ) = ρ(1)(θ1x+ θ′2w)H(x,w, z)

and

G∗ = E
[
ρ(1)(θ01nX

∗
i + θ′02nWi)H(x,w, z)

]
.

Finally,

G(k)
x (x, s, w) =

k∑
j=0

(
k

j

)
θj1ρ

(j+1)(θ1x+ θ′2w)H(k−j)
x (x,w, z), (A.3)

with

H(k−j)
x (x,w, z) = h(k−j)

x (x,w, z) · (x,w′) + (k − j)h(k−j−1)
x (x,w, z) · (1, 0′).

The following set of regularity conditions is sufficient to verify most of the needed high-level
assumptions. Specifically, it ensures that the following assumptions hold: Assumptions 4, 5 (i)-(iii),
6, 7, 9.

Assumption A.3.

(i) ρ(·) is at least K + 2 times differentiable (on its domain) and h(K+1)
x (x,w, z) exist (on X ) for

all w ∈ W and z ∈ Z;

(ii) for some integer J , K + 2 6 J 6 M , we have: (a) supx∈X
∥∥∥h(J)

x (x,w, z)
∥∥∥ < ∞ for all

w ∈ W and z ∈ Z; (b) for all non-negative integers k1 and k2 such that k1 + k2 = J ,
supx∈X

∥∥∥ρ(k1)(θ1x+ θ′2w)h(k2)
x (x,w, z)

∥∥∥ < d(w, z, θ) and supx∈X
∥∥∥ρ(k1+1)(θ1x+ θ′2w)h(k2)

x (x,w, z)x
∥∥∥ <

d(w, z, θ) for some function d(w, z, θ), for all θ ∈ Θ, w ∈ W, z ∈ Z;

(iii) for some positive integer Jρ 6M + 2, we have
∥∥ρ(Jρ)∥∥

∞ <∞;

(iv) for some δ0 > 0 and C > 0, for all {Υn} satisfying |θ01n| 6 δ0, we have λmin(B∗′B∗) > C,
where

B∗ ≡ E
[
ρ

(1)∗
i

(
h∗i · (X∗i ,W ′i ), h

(1)∗
xi , . . . , h

(K−1)∗
xi

)]
;

(v) for some δ0 > 0 and C > 0, for all {Υn} satisfying |θ01n| 6 δ0, we have λmin(B∗′(γ)B∗(γ)) > C,
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where

B∗(γ) ≡ E
[
ρ

(1)∗
i

((
h∗i −

K∑
k=2

γkh
(k)∗
xi

)
· (X∗i ,W ′i ), h

(1)∗
xi , . . . , h

(K−1)∗
xi

)]
;

(vi) for all δ > 0, ∃Cδ > 0 such that, for {Υn} satisfying ‖θ01n‖ > δ, λmin(Ψ∗′Ψ∗) > Cδ;

(vii) for some η > 0, E
[
|Ui|4+η] < C and E

[
‖h(X∗i ,Wi, Zi)‖4+η] < C;

(viii) λmin(E [U2
i h(X∗i ,Wi, Zi)h(X∗i ,Wi, Zi)′]) > C > 0;

(ix)

E
[
X∗4i +‖Wi‖4 +

(
sup
x∈X

∥∥∥h(J)
x (x,Wi, Zi)

∥∥∥)4
+
J−1∑
j=0

(∥∥∥h(j)
x (X∗i ,Wi, Zi)

∥∥∥4 (
1 + |X∗i |

4 + ‖Wi‖4
))

+ sup
θ∈Θ

max{J,Jρ−1}∑
j=0

ρ(j)(θ1X
∗
i + θ′2Wi)4 + d(Zi,Wi, θ)2

] < C.

Verification of Assumption 4. Under assumed smoothness, Assumption 4 (i) trivially follows from
Assumption A.3. Assumption 4 (ii) is satisfied since, under Assumption A.3 (ii), we have

sup
x∈X

∥∥∥g(J)
x (x, s, θ)

∥∥∥ <∞, sup
x∈X

∥∥∥G(J)
x (x, s, θ)

∥∥∥ <∞
for all s ∈ S and θ ∈ Θ (by inspection, using formulas (A.1) and (A.3)). Then, the reasoning
provided in Remark 19 guarantees that Assumption 4 (ii) holds.
Verification of Assumptions 7 (i) and 9 (i). (A.2) suggests that g(k)∗

x = A∗kθ01n+On(‖θ01n‖2), with

A∗k = kE
[
ρ(1)(θ01nX

∗
i + θ′02nWi)h(k−1)

x (X∗i ,Wi, Zi)
]
.

Also note that, under additional (weak) smoothness conditions, one can also take

A∗k = kE
[
ρ(1)(θ′02nWi)h(k−1)

x (X∗i ,Wi, Zi)
]
.

Verification of Assumptions 7 (iii) and 9 (iv). We will argue that g(k)∗
x − g(k)

x = On(σn ‖θ01n‖),
which covers the both. Using formulas (A.1) and (A.2), we obtain∥∥∥g(k)

x − g(k)∗
x

∥∥∥ 6 ∥∥∥E [ρ(θ01nXi + θ′02nWi)− Yi)h(k)
x (Xi,Wi, Zi)

]∥∥∥
+

k∑
j=1

(
k

j

)
|θ01n|j

∥∥∥E[ρ(j)(θ01nXi + θ′02nWi)h(k−j)
x (Xi,Wi, Zi)

− ρ(j)(θ01nX
∗
i + θ′02nWi)h(k−j)

x (X∗i ,Wi, Zi)]
∥∥∥. (A.4)

First, we argue that∥∥∥E [ρ(θ01nXi + θ′02nWi)− Yi)h(k)
x (Xi,Wi, Zi)

]∥∥∥ = On(σ2
n |θ01n|).
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Note that, since the measurement error is classical, we also have E [Ui|X∗i ,Wi, Zi, εin] = 0. Hence,
E [Uih(Xi,Wi, Zi)] = 0 and, consequently,∥∥∥E [ρ(θ01nXi + θ′02nWi)− Yi)h(k)

x (Xi,Wi, Zi)
]∥∥∥

=
∥∥∥E [(ρ(θ01nXi + θ′02nWi)− ρ(θ01nX

∗
i + θ′02nWi))h(k)

x (Xi,Wi, Zi)
]∥∥∥ .

Using Assumption A.3 (iii), we have

ρ(θ01nXi + θ′02nWi)− ρ(θ01nX
∗
i + θ′02nWi) =

Jρ−1∑
j=1

θj01n
j! ρ(j)(θ01nX

∗
i + θ02nWi)εji + rρ(Xi, X

∗
i ,Wi, θ0n),

where

rρ(Xi, X
∗
i ,Wi, θ0n) ≡ θ

Jρ
01n
Jρ!

ρ(Jρ)(θ01nX̃i + θ02Wi)ε
Jρ
i , (A.5)

for some X̃i between Xi and X∗i . Then, Assumption A.3 (iii) guarantees that

‖rρ(Xi, X
∗
i ,Wi, θ0n)‖ 6 |θ01n|Jρ

Jρ!

∥∥∥ρ(Jρ)
∥∥∥
∞
|εi|Jρ .

Similarly, using Assumption A.3 (ii), we have

h(k)
x (Xi,Wi, Zi) =

J−1∑
j=k

1
(j − k)!h

(j)
x (X∗i ,Wi, Zi)εj−ki + rh(Xi, X

∗
i ,Wi, Zi, θ0n), (A.6)

where

rh(Xi, X
∗
i ,Wi, θ0n) = 1

(J − k)!h
(J)
x (X̃i,Wi, Zi)εJ−ki ,

so

‖rh(Xi, X
∗
i ,Wi, θ0n)‖ 6 1

J ! sup
x∈X

∥∥∥h(J)
x (x,Wi, Zi)

∥∥∥ |εi|J .
Finally, multiplying expansions (A.5) and (A.6) and bounding the expectation of their product give
us ∥∥∥E [(ρ(θ01nXi + θ′02nWi)− ρ(θ01nX

∗
i + θ′02nWi))h(k)

x (Xi,Wi, Zi)
]∥∥∥ = On(σn |θ01n|). (A.7)

Note that J 6M and Jρ 6M + 2 guarantee that these product does involve powers of |εin| larger
than 2M , for all k ∈ {2, . . . ,K}. To complete the proof then it is sufficient to show that the second
term in (A.4) is also On(σn ‖θ01n‖). This would follow from

E
[
ρ(j)(θ01nXi + θ′02nWi)h(k−j)

x (Xi,Wi, Zi)− ρ(j)(θ01nX
∗
i + θ′02nWi)h(k−j)

x (X∗i ,Wi, Zi)
]

= O(σn)

for all k ∈ {2, . . . ,K} and j ∈ {1, . . . , k}. Let ζkj(x, s, θ) ≡ ρ(j)(θ1x+ θ′2w)h(k−j)
x (x,w, z). Then we
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want to show that

E
[
ζkj(Xi, Si, θ0n)− ζkj(X∗i , Si, θ0n)

]
= On(σn). (A.8)

This is straightforward to verify: Assumption A.3 (ii) ensures that the J − k-th derivative of
ζkj(x, s, θ) with respect to x exists and satisfies

sup
x∈X

∥∥∥ζ(J−k)
kj,x (x, s, θ)

∥∥∥ <∞
for all s ∈ S and θ ∈ Θ. Hence, the standard expansion of ζkj(X∗i ,Wi, θ0n) around X∗i applies:

ζkj(Xi, Si, θ0n)− ζkj(X∗i , Si, θ0n) =
J−k−1∑

`

1
`!ζ

(`)
kj,x(X∗i , Si, θ0n)ε`in + rζ,kj(Xi, X

∗
i , Si, θ0n), (A.9)

where the remainder can be bounded as

‖rζ,kj‖ 6
1

(J − k)! sup
x∈X

∥∥∥ζ(J−k)
kj,x (x, Si, θ0n)

∥∥∥ |εin|J−k .
Then (A.9) ensures that (A.8) holds. Finally, the bounds (A.4), (A.7), and (i) together ensure that
g

(k)∗
x − g(k)

x = On(σn ‖θ01n‖) for all k ∈ {2, . . . ,K}. Note that Assumptions A.3 vii and ix ensure
that all needed moments exist.
Verification of Assumption 7 (ii). Note that before, we have shown that it is possible to take
A∗k = ka∗k, where a∗k = E

[
ρ

(1)∗
i h

(k−1)∗
xi

]
. Hence, Assumption A.3 (iv) ensures that Assumption 7 (ii)

holds.
Verification of Assumption 9 (iii). First, note that Ψ∗A(0) = Ψ∗A. We have already verified that
Assumption 7 (ii) holds, so λmin(Ψ∗′AΨ∗A) > C > 0 for all {Υn} satisfying |θ01n| 6 δ0. Hence,
by continuity or Ψ∗A(γ) it necessarily follows that there exist some Γ̃ 3 0 and C̃ > 0 such that
infγ∈Γ̃ λmin(Ψ∗′A(γ)Ψ∗A(γ)) > C̃ > 0. Consequently, we conclude that Assumption 9 (iii) follows
from Assumption 7 (ii) whenever Γ ∈ Γ̃.

To extend Γ beyond Γ̃, note that, using (A.3), we obtain

Ψ∗(θ0n, γ) = G∗ −
K∑
k=2

γkG
(k)∗
x

= G∗ −
K∑
k=2

γkE
[
ρ

(1)∗
i H

(k)∗
xi

]
+On(|θ01n|)

= E
[
ρ

(1)∗
xi

(
H∗i −

K∑
k=2

γkH
(k)∗
xi

)]
+On(|θ01n|)

= E
[
ρ

(1)∗
xi

(
h∗i · (Xi,W

′
i )−

K∑
k=2

γk

(
h

(k)∗
xi · (Xi,W

′
i ) + kh

(k−1)∗
xi · (1, 0′)

))]
+On(|θ01n|)

= E
[
ρ

(1)∗
xi

((
h∗i −

K∑
k=2

γkh
(k)∗
xi

)
· (Xi,W

′
i )−

K∑
k=2

γkh
(k−1)∗
xi · (1, 0′)

)]
+On(|θ01n|).
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Hence, recalling A∗k = ka∗k with a∗k = E
[
ρ

(1)∗
i h

(k−1)∗
xi

]
, we have

Ψ∗A(γ) = E
[
ρ

(1)∗
xi

((
h∗i −

K∑
k=2

γkh
(k)∗
xi

)
· (Xi,W

′
i )−

K∑
k=2

γkh
(k−1)∗
xi · (1, 0′),

2h(1)∗
xi , . . . ,Kh

(K−1)∗
xi

)]
+On(|θ01n|).

Finally, since (i)
∑K
k=2 γkh

(k−1)∗
xi is already in the span of the last K − 1 columns of Ψ∗A(γ) and γ

is bounded and (ii) without loss of generality δ0 can be taken that small so On(|θ01n|) is negligible,
Assumption (A.3) (v) ensures that Assumption 9 (iii) holds.
Verification of Assumption 6. First, we have shown that Assumptions 7 (i) and (ii) hold. These
Assumptions together necessarily imply that there exist some δ > 0 such that Assumption 6 also
necessarily holds provided that we restrict the set of possible {Υn} to |θ01n| 6 δ. In other words,
Assumptions 7 (i) and (ii) imply that the standard local identification condition (Assumption 6)
should also hold once true true parameter space is restricted to |θ01n| 6 δ. However, to extend this
for a wider range DGPs, we necessarily need assume that this condition is also globally satisfied
(Assumption A.3 (vi)).
Verification of Assumptions 5 (i)-(iii) and 9 (ii). Assumption 5 (ii) follows directly from Assumption
A.3 (viii). Condition E

[
‖g∗i (θ0n)‖2+η] follows from Assumption A.3 (vii). Assumptions A.3 (vii)

and (ix) together imply

E
[
sup
θ∈Θ

(
K∑
k=0

(∥∥∥g(k)∗
xi (θ)

∥∥∥2
+
∥∥∥G(k)∗

xi (θ)
∥∥∥2

+
∥∥∥∇θvec (G(k)∗

xi (θ)
)∥∥∥)

+ b∗21i (θ) + b∗22i (θ) + b∗G1i(θ) + b∗G2i(θ)
)]

< C;

which covers the rest of Assumptions 5 (i), (iii), and 9 (ii).
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